Responses of sunflower chlorophyll mutants to increased temperature and oxidative burst

Responses of sunflower chlorophyll mutants to increased temperature and oxidative burst A tolerance of nuclear, plastome, and mitochondrial mutants of sunflower (Helianthus annuus L.) to extreme factors, increased temperature and oxidative stress, which was simulated by hyperbaric oxygenation was studied. In model experiments, activities of superoxide dismutase and catalase were assayed; cytogenetic analysis was used for the assessments of proliferative activity of cells in the root meristem; in field experiments, seedling emergence and growth at the stage of 3–4 leaf pair were evaluated. Most tolerant to increased temperature and oxygen pressure were a plastome en:chlorina-5 mutant and a partial revertant pr6-en:chlorina-7 with a changed structure of mitochondrial DNA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Responses of sunflower chlorophyll mutants to increased temperature and oxidative burst

Loading next page...
 
/lp/springer_journal/responses-of-sunflower-chlorophyll-mutants-to-increased-temperature-ya9NlzopQb
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2006 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443706020099
Publisher site
See Article on Publisher Site

Abstract

A tolerance of nuclear, plastome, and mitochondrial mutants of sunflower (Helianthus annuus L.) to extreme factors, increased temperature and oxidative stress, which was simulated by hyperbaric oxygenation was studied. In model experiments, activities of superoxide dismutase and catalase were assayed; cytogenetic analysis was used for the assessments of proliferative activity of cells in the root meristem; in field experiments, seedling emergence and growth at the stage of 3–4 leaf pair were evaluated. Most tolerant to increased temperature and oxygen pressure were a plastome en:chlorina-5 mutant and a partial revertant pr6-en:chlorina-7 with a changed structure of mitochondrial DNA.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 24, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off