Responses of photosystem II of white elm to UV-B radiation monitored by OJIP fluorescence transients

Responses of photosystem II of white elm to UV-B radiation monitored by OJIP fluorescence transients Photosystem II (PSII) activities in both samara and leaf of white elm (Ulmus pumila L.) were significantly inhibited by enhanced UV-B radiation (UVBR). UVBR disturbed both the donor and acceptor sides of PSII. The plastoquinone (PQ) pool size on the acceptor side, the trapped excited energy for complete reduction of QA, and the proportion of closed PSII reaction centers (RCs) increased, with PSII RCs being transformed into dissipative sinks for excitation energy under UVBR. However, samara and leaf responded to UVBR in different ways. A decrease in the F 0 for leaf induced by UV-B radiation suggests the formation of fluorescence-quenching centers. An increase in the VI for leaf under UVBR might mean the accumulation of reduced QA and PQ. F 0 and VI for samara showed opposite change pattern. Leaf has the mechanism of regulation of the amount of light reaching the RC through decreasing the number of light-harvesting chlorophyll molecules under UVBR while samara may be unable to regulate the light-harvesting capacity. PSII in samara was more susceptible to UVBR than that in leaf, with PIABS for samara decreasing more rapidly by a factor of 6.4 than that for leaf. Samara can recover more easily from UVBR-induced damage to PSII than the leaf. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Responses of photosystem II of white elm to UV-B radiation monitored by OJIP fluorescence transients

Loading next page...
 
/lp/springer_journal/responses-of-photosystem-ii-of-white-elm-to-uv-b-radiation-monitored-JNrlExlQG4
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711050153
Publisher site
See Article on Publisher Site

Abstract

Photosystem II (PSII) activities in both samara and leaf of white elm (Ulmus pumila L.) were significantly inhibited by enhanced UV-B radiation (UVBR). UVBR disturbed both the donor and acceptor sides of PSII. The plastoquinone (PQ) pool size on the acceptor side, the trapped excited energy for complete reduction of QA, and the proportion of closed PSII reaction centers (RCs) increased, with PSII RCs being transformed into dissipative sinks for excitation energy under UVBR. However, samara and leaf responded to UVBR in different ways. A decrease in the F 0 for leaf induced by UV-B radiation suggests the formation of fluorescence-quenching centers. An increase in the VI for leaf under UVBR might mean the accumulation of reduced QA and PQ. F 0 and VI for samara showed opposite change pattern. Leaf has the mechanism of regulation of the amount of light reaching the RC through decreasing the number of light-harvesting chlorophyll molecules under UVBR while samara may be unable to regulate the light-harvesting capacity. PSII in samara was more susceptible to UVBR than that in leaf, with PIABS for samara decreasing more rapidly by a factor of 6.4 than that for leaf. Samara can recover more easily from UVBR-induced damage to PSII than the leaf.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 21, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off