Responses of Native and Invasive Floating Aquatic Plant Communities to Salinity and Desiccation Stress in the Southeastern US Coastal Floodplain Forests

Responses of Native and Invasive Floating Aquatic Plant Communities to Salinity and Desiccation... Low-lying coastal ecosystems along the northern Gulf of Mexico are already experiencing the effects of elevated salinity from sea-level rise and are predicted to face extreme events such as extended saltwater inundation, intense Atlantic hurricanes, and episodic drought. The ability of coastal plant communities to survive stresses from these events depends largely on how these communities respond to the stresses. Our understanding of how plant communities dominated by native vs. invasive plants respond to extreme events is limited. Utilizing controlled greenhouse experiments, we assessed the responses of floating aquatic macrophyte communities, dominated by native or invasive plants, of the coastal floodplains, Louisiana, USA, to a gradient of chronic salinity, mimicking sea-level rise; a gradient of acute salinity, mimicking hurricane storm surges; and a gradient of desiccation stress, mimicking episodic drought. We found that salinity and desiccation stress effects on plant communities depended on the degree of plant invasion; plant community cover decreased precipitously as severity of stress increased. Specifically, extreme salinity led to a decrease in plant cover of > 90% when communities were dominated by invasive plants, whereas increased desiccation stress led to decreased plant cover of 100% when communities were dominated by native species. At low to http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuaries and Coasts Springer Journals

Responses of Native and Invasive Floating Aquatic Plant Communities to Salinity and Desiccation Stress in the Southeastern US Coastal Floodplain Forests

Loading next page...
 
/lp/springer_journal/responses-of-native-and-invasive-floating-aquatic-plant-community-to-50t8ktgOWm
Publisher
Springer Journals
Copyright
Copyright © 2018 by Coastal and Estuarine Research Federation
Subject
Environment; Environment, general; Ecology; Freshwater & Marine Ecology; Environmental Management; Coastal Sciences; Water and Health
ISSN
1559-2723
eISSN
1559-2731
D.O.I.
10.1007/s12237-018-0419-2
Publisher site
See Article on Publisher Site

Abstract

Low-lying coastal ecosystems along the northern Gulf of Mexico are already experiencing the effects of elevated salinity from sea-level rise and are predicted to face extreme events such as extended saltwater inundation, intense Atlantic hurricanes, and episodic drought. The ability of coastal plant communities to survive stresses from these events depends largely on how these communities respond to the stresses. Our understanding of how plant communities dominated by native vs. invasive plants respond to extreme events is limited. Utilizing controlled greenhouse experiments, we assessed the responses of floating aquatic macrophyte communities, dominated by native or invasive plants, of the coastal floodplains, Louisiana, USA, to a gradient of chronic salinity, mimicking sea-level rise; a gradient of acute salinity, mimicking hurricane storm surges; and a gradient of desiccation stress, mimicking episodic drought. We found that salinity and desiccation stress effects on plant communities depended on the degree of plant invasion; plant community cover decreased precipitously as severity of stress increased. Specifically, extreme salinity led to a decrease in plant cover of > 90% when communities were dominated by invasive plants, whereas increased desiccation stress led to decreased plant cover of 100% when communities were dominated by native species. At low to

Journal

Estuaries and CoastsSpringer Journals

Published: Jun 4, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off