Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter quality

Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter... The present study aims to understand how microbial decomposition of leaf litter from two riparian tree species differing in their quality varies among streams covering a gradient of nutrient concentrations. We incubated leaf litter from alder (Alnus glutinosa) and sycamore (Platanus × hispanica) in 3 streams with low human pressure and 2 streams influenced by wastewater treatment plant effluents. We quantified leaf litter decomposition rates (k) and examined the temporal changes in the leaf litter concentrations of carbon (C) and nitrogen (N) throughout the incubation period. We measured the extracellular enzyme activities involved in degradation of C (i.e., cellobiohydrolase) and organic phosphorus (i.e., phosphatase). Results showed that alder k decreased with increasing nutrient concentrations, while sycamore decomposed similarly among streams. For both species, leaf litter N concentrations were positively related to in-stream dissolved N concentrations. However, we found different temporal patterns of leaf litter N concentrations between species. Finally, we found relevant differences in the enzymatic activities associated to each leaf litter species across the nutrient gradient. These results suggest that the intrinsic characteristics of the leaf litter resources may play a relevant role on the microbially driven leaf litter decomposition and mediate its response to dissolved nutrient concentrations across streams. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Hydrobiologia Springer Journals

Responses of microbially driven leaf litter decomposition to stream nutrients depend on litter quality

Loading next page...
 
/lp/springer_journal/responses-of-microbially-driven-leaf-litter-decomposition-to-stream-fLD3idYap7
Publisher
Springer International Publishing
Copyright
Copyright © 2017 by Springer International Publishing AG
Subject
Life Sciences; Freshwater & Marine Ecology; Ecology; Zoology
ISSN
0018-8158
eISSN
1573-5117
D.O.I.
10.1007/s10750-017-3372-3
Publisher site
See Article on Publisher Site

Abstract

The present study aims to understand how microbial decomposition of leaf litter from two riparian tree species differing in their quality varies among streams covering a gradient of nutrient concentrations. We incubated leaf litter from alder (Alnus glutinosa) and sycamore (Platanus × hispanica) in 3 streams with low human pressure and 2 streams influenced by wastewater treatment plant effluents. We quantified leaf litter decomposition rates (k) and examined the temporal changes in the leaf litter concentrations of carbon (C) and nitrogen (N) throughout the incubation period. We measured the extracellular enzyme activities involved in degradation of C (i.e., cellobiohydrolase) and organic phosphorus (i.e., phosphatase). Results showed that alder k decreased with increasing nutrient concentrations, while sycamore decomposed similarly among streams. For both species, leaf litter N concentrations were positively related to in-stream dissolved N concentrations. However, we found different temporal patterns of leaf litter N concentrations between species. Finally, we found relevant differences in the enzymatic activities associated to each leaf litter species across the nutrient gradient. These results suggest that the intrinsic characteristics of the leaf litter resources may play a relevant role on the microbially driven leaf litter decomposition and mediate its response to dissolved nutrient concentrations across streams.

Journal

HydrobiologiaSpringer Journals

Published: Sep 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off