Response surface optimization of nitrite removal from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles using a three-factor, three-level Box-Behnken design

Response surface optimization of nitrite removal from aqueous solution by Fe3O4 stabilized... The magnetite (Fe3O4) stabilized zero-valent iron nanoparticles (Fe3O4-ZVINPs) were synthesized and characterized by TEM, SEM, BET, and XRD techniques and used for removal of NO 2 − from aqueous solution. Response surface methodology (RSM) combined with a three-level, three-variable, Box-Behnken design was used to optimize the individual and interactive effects of three different experimentally controlled factors like pH, temperature, and Fe3O4-ZVINPs dose on removal efficiency. The RSM uses a second-order polynomial quadratic model (SOPM) for predicting the optimum point. The analysis of variance has been employed to evaluate the significance of the polynomial model for predicting the optimal conditions of independent process variables to get maximum removal efficiency. Three-dimensional (3D) response surface plots were constructed to visualize the simultaneous interactive effects between two process variables. Regression analysis showed a good fit of the experimental data to the SOPM with a coefficient of determination (R 2) of 0.993 and Fisher F-value of 82.27. All the three factors had a significant impact on removal of NO 2 − . The predicted value of model (94.54 mg g−1) was in good agreement with experimental value (93.78 mg g−1) under the optimum conditions of temperature 49.6 °C; pH 4; and dose 0.4 g L−1. The study demonstrated that Fe3O4 in combination with ZVINPs significantly accelerated the NO 2 − removal. The removal of NO 2 − from synthetic ground water was also investigated at optimum conditions to assess the effect of the other competing ions. The results of the study indicate that Fe3O4-ZVINPs have promising potential to cleanup NO 2 − from contaminated water. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Response surface optimization of nitrite removal from aqueous solution by Fe3O4 stabilized zero-valent iron nanoparticles using a three-factor, three-level Box-Behnken design

Loading next page...
 
/lp/springer_journal/response-surface-optimization-of-nitrite-removal-from-aqueous-solution-dP9N50b7DP
Publisher
Springer Netherlands
Copyright
Copyright © 2015 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-015-2147-6
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial