Response of selected water chemical quality parameters to slight thinning in a mature oak–beech forest ecosystem under sub-humid climate conditions

Response of selected water chemical quality parameters to slight thinning in a mature oak–beech... The objective of this study was to determine the effect of 18% thinning on streamflow nutrient flux from a mature oak–beech forest ecosystem by paired watershed approach. Two experimental watersheds including control (W-I) and treatment (W-IV) watersheds were used in the study. The experimental watersheds were monitored about 6 years from 2006 to 2011 for the calibration period and 4 years from 2012 to 2015 for the treatment period. The forest in the treatment watershed was thinned between October and December in 2011, and the forest in the control watershed was left untreated. Water grab samples were collected from the streams in the watersheds on weekly basis during both the calibration and treatment periods and analyzed for calcium (Ca2+), magnesium (Mg2+), Kjeldahl nitrogen (KN), sodium (Na+), potassium (K+), iron (Fe3+), aluminum (Al3+), ammonium nitrogen (NH4 +-N), and sulfate (SO4 2−). The simple linear regression equations were developed between mean monthly nutrient fluxes of two watersheds in the calibration period with significantly high correlation coefficients, and they were used to estimate nutrient fluxes from the treatment watershed during the treatment period as if thinning had not been applied. The changes in the monthly nutrient fluxes were estimated as the differences between measured and values calculated with the linear regression equations. Results showed that removal of 18% standing timber volume did not significantly change nutrient exports except for KN and Na+ from the treatment watershed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Forest Research Springer Journals

Response of selected water chemical quality parameters to slight thinning in a mature oak–beech forest ecosystem under sub-humid climate conditions

Loading next page...
 
/lp/springer_journal/response-of-selected-water-chemical-quality-parameters-to-slight-opj2K68H0y
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Life Sciences; Forestry; Plant Sciences; Plant Ecology
ISSN
1612-4669
eISSN
1612-4677
D.O.I.
10.1007/s10342-017-1062-3
Publisher site
See Article on Publisher Site

Abstract

The objective of this study was to determine the effect of 18% thinning on streamflow nutrient flux from a mature oak–beech forest ecosystem by paired watershed approach. Two experimental watersheds including control (W-I) and treatment (W-IV) watersheds were used in the study. The experimental watersheds were monitored about 6 years from 2006 to 2011 for the calibration period and 4 years from 2012 to 2015 for the treatment period. The forest in the treatment watershed was thinned between October and December in 2011, and the forest in the control watershed was left untreated. Water grab samples were collected from the streams in the watersheds on weekly basis during both the calibration and treatment periods and analyzed for calcium (Ca2+), magnesium (Mg2+), Kjeldahl nitrogen (KN), sodium (Na+), potassium (K+), iron (Fe3+), aluminum (Al3+), ammonium nitrogen (NH4 +-N), and sulfate (SO4 2−). The simple linear regression equations were developed between mean monthly nutrient fluxes of two watersheds in the calibration period with significantly high correlation coefficients, and they were used to estimate nutrient fluxes from the treatment watershed during the treatment period as if thinning had not been applied. The changes in the monthly nutrient fluxes were estimated as the differences between measured and values calculated with the linear regression equations. Results showed that removal of 18% standing timber volume did not significantly change nutrient exports except for KN and Na+ from the treatment watershed.

Journal

European Journal of Forest ResearchSpringer Journals

Published: Jul 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off