Response of Mutant Sunflower Lines to Heat Shock

Response of Mutant Sunflower Lines to Heat Shock The effects of heat shock (HS) (40°C for 1 h) on the level of malondialdehyde (MDA), the terminal product of lipid peroxidation, superoxide dismutase (SOD) activity, catalase activity, and total peroxidase activity (TPA) were studied in root meristems and chloroplasts of several sunflower (Helianthus annuusL.) lines that carried nuclear or plastome chlorophyll mutations. HS either lowered or did not affect the MDA level in the root meristem and in the chloroplasts from the first true leaf, as compared to the untreated plants. In both treatments, the root and leaf enzyme activities varied in the sunflower lines. In the root meristem, catalase was the most sensitive to HS, whereas, in the chloroplasts from HS-treated sunflower lines, HS activated either TPA or SOD. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Response of Mutant Sunflower Lines to Heat Shock

Loading next page...
 
/lp/springer_journal/response-of-mutant-sunflower-lines-to-heat-shock-h0cG3W0kmd
Publisher
Springer Journals
Copyright
Copyright © 2001 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/A:1012512725926
Publisher site
See Article on Publisher Site

Abstract

The effects of heat shock (HS) (40°C for 1 h) on the level of malondialdehyde (MDA), the terminal product of lipid peroxidation, superoxide dismutase (SOD) activity, catalase activity, and total peroxidase activity (TPA) were studied in root meristems and chloroplasts of several sunflower (Helianthus annuusL.) lines that carried nuclear or plastome chlorophyll mutations. HS either lowered or did not affect the MDA level in the root meristem and in the chloroplasts from the first true leaf, as compared to the untreated plants. In both treatments, the root and leaf enzyme activities varied in the sunflower lines. In the root meristem, catalase was the most sensitive to HS, whereas, in the chloroplasts from HS-treated sunflower lines, HS activated either TPA or SOD.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 10, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off