Response improvement of In2O3 hot-wire gas sensor doped by Sn

Response improvement of In2O3 hot-wire gas sensor doped by Sn A simple co-precpitation method was used to synthesize Sn-doped In2O3 materials, with InCl3·4H2O as the precursor and SnCl4·5H2O as the dopant source. The morphology and structure of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. Moreover, we investigated the electrochemical properties of the synthesized nanoparticles by electrochemical impedance spectroscopy. The hot-wire type gas sensors based on Sn-doped In2O3 nanoparticles were fabricated, then gas-sensing properties were examined and the gas-sensing mechanism was discussed. SEM observation revealed that the composite nanoparticles had a uniform size in range of 9–20 nm. The responses of the ITO nanocrystalline sensors at 100 ppm ethanol were improved from 256 to 701 mV at 11.1 wt%. Furthermore, the response and recovery time of the ITO nanocrystalline sensors were 15 and 30 s, respectively. The gas-sensing mechanism analysis showed that the electrical conductivity of In2O3 was obviously increased by doping with Sn, thus the responses of the gas sensors to ethanol were significantly improved. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science: Materials in Electronics Springer Journals

Response improvement of In2O3 hot-wire gas sensor doped by Sn

Loading next page...
 
/lp/springer_journal/response-improvement-of-in2o3-hot-wire-gas-sensor-doped-by-sn-4dakfBaikI
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Materials Science; Optical and Electronic Materials; Characterization and Evaluation of Materials
ISSN
0957-4522
eISSN
1573-482X
D.O.I.
10.1007/s10854-017-8482-1
Publisher site
See Article on Publisher Site

Abstract

A simple co-precpitation method was used to synthesize Sn-doped In2O3 materials, with InCl3·4H2O as the precursor and SnCl4·5H2O as the dopant source. The morphology and structure of the synthesized nanoparticles were examined by X-ray diffraction and scanning electron microscopy (SEM), respectively. Moreover, we investigated the electrochemical properties of the synthesized nanoparticles by electrochemical impedance spectroscopy. The hot-wire type gas sensors based on Sn-doped In2O3 nanoparticles were fabricated, then gas-sensing properties were examined and the gas-sensing mechanism was discussed. SEM observation revealed that the composite nanoparticles had a uniform size in range of 9–20 nm. The responses of the ITO nanocrystalline sensors at 100 ppm ethanol were improved from 256 to 701 mV at 11.1 wt%. Furthermore, the response and recovery time of the ITO nanocrystalline sensors were 15 and 30 s, respectively. The gas-sensing mechanism analysis showed that the electrical conductivity of In2O3 was obviously increased by doping with Sn, thus the responses of the gas sensors to ethanol were significantly improved.

Journal

Journal of Materials Science: Materials in ElectronicsSpringer Journals

Published: Jan 8, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off