Respiration: comparison of the Winkler technique, O2 electrodes, O2 optodes and the respiratory electron transport system assay

Respiration: comparison of the Winkler technique, O2 electrodes, O2 optodes and the respiratory... Aerobic respiration is a biological energy generation process that consumes organic carbon and oxygen. In the ocean, the balance between photosynthesis and respiration is recognized as critical to understanding the ocean’s impact on the hydrospheric and atmospheric CO2. Techniques to determine respiration can be based on inorganic chemistry, electrochemistry, photochemistry, and enzymology. Here, for method comparison, physiological respiration was simultaneously measured by the Winkler method (W), O2 electrodes (E), and O2 optodes (O). These techniques detected respiratory O2 consumption (R), in situ, in dark incubation chambers. Respiratory electron transport system activity measurements detected potential respiration (Ф), biochemically. Leptomysis lingvura, a marine mysid, and Ulva rigida, a species of green algal sea lettuce, were the two organisms tested. Physiological respiration results from each technique were not statistically significantly different (multiple paired Student’s t tests, p value > 0.05) and were inside the range of similar published measurements. The mean dry-mass-specific respiration in L. lingvura and U. rigida was 0.147 ± 0.037 and 0.023 ± 0.008 µmol O2 h−1 (mg dry mass)−1, n = 9, respectively. The R-to-Ф ratios were different in the two organisms. However, linear regression between R and Ф for L. lingvura and U. rigida was stronger (r 2 = 0.814 and 0.313) than the linear regression between R and dry biomass (r 2 = 0.643 and 0.213). The application of Passing–Bablok regression analysis evidenced the high correlation between the results, and the Bland–Altman analysis examined the average difference (“bias”) and limits of agreement between the methods. Marine Biology Springer Journals

Respiration: comparison of the Winkler technique, O2 electrodes, O2 optodes and the respiratory electron transport system assay

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Environment; Marine & Freshwater Sciences; Freshwater & Marine Ecology; Oceanography; Microbiology; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial