Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics

Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics We develop a food-fish model (FFM), whichquantitatively relates properties of aquaticfood types (size, shape, escape velocity,habitat, mechanical properties and chemicalquality) to feeding structures of cyprinidfish. The model is based on functionalmorphology and experiments on search, capture,selection, and internal processing of food byfish. The FFM shows which food properties aremost critical in feeding and how fish canoptimise coping with them. Relative food sizeimposes the highest demands, followed by preyvelocity, food habitat and mechanicalproperties. These overrule taxonomic affinitiesof food types. Highly demanding food types(large, fast prey, suspensions of plankton,benthic prey and mechanically tough items)impose incompatible morphological requirementson fish. We apply the FFM to the endemic Barbus species flock of Lake Tana (Ethiopia),since the structural diversity of its 14species reflects recent adaptations to trophicniches. We predict their potentials inutilising different food types by quantitativecomparisons of 35 parameters, measured for eachspecies, with the values for each foodspecialist derived from the FFM. These dietpredictions are tested against gut contentsfrom 4,711 fish, sampled over seasons andhabitats. Gut contents and predictions show agood overall fit. The value of the model isshown by its resolution in predicting resourcepartitioning among the barbs. For the 14 barbsa trophic hierarchy with six major trophicgroups is reconstructed which closely matchesthe predictions. Trophic specialists (> 65%by volume of a single food type) are alsostructurally specialised, whereas less extremeanatomical structures characterise trophicgeneralists, allowing them to switch betweenfeeding modes. Trophic generalists are bestdefined by behavioral flexibility, sincefeeding modes integrate both fish and foodcharacters. The FFM is of practical use inevaluating the role of morphological diversityin an ecosystem and enables the analysis oftrophic interactions in fish communities and ofthe cascading effects by environmental change.Such an approach can be instrumental in thedevelopment of management strategies forfisheries and in conservation of biodiversity. Reviews in Fish Biology and Fisheries Springer Journals

Resource partitioning by Lake Tana barbs predicted from fish morphometrics and prey characteristics

Loading next page...
Kluwer Academic Publishers
Copyright © 2000 by Kluwer Academic Publishers
Life Sciences; Freshwater & Marine Ecology; Zoology
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial