Resource-Dependent Clutch Size Decisions and Size-Fitness Relationships in a Gregarious Ectoparasitoid Wasp, Bracon brevicornis

Resource-Dependent Clutch Size Decisions and Size-Fitness Relationships in a Gregarious... Gregarious parasitic wasps, which lay more than one egg into or onto a host arthropod’s body, are usually assumed to lay an optimal number of eggs per host. If females would lay too few eggs, some resources may be wasted, but if females lay too many eggs, offspring may develop into substantially smaller-sized adults or may not develop successfully and die. The availability of hosts can further influence a female’s clutch size decision, as more eggs should be laid when hosts are scarce. Here, we analyzed clutch size decisions and the fitness consequences thereof in the ectoparasitic wasp Bracon brevicornis (Hymenoptera: Braconidae), a potential biocontrol agent against pest moth species. For experiments, larvae of the Mediterranean flower moth, Ephestia kuehniella (Lepidoptera: Pyralidae) were used. Using artificially created as well as naturally laid clutches of eggs, the effects of clutch size on fitness of first (F1) and second (F2) generation offspring were investigated. Our results revealed that the fitness consequences of large clutches included both increased mortality and smaller adult sizes of the emerging offspring (F1). Smaller F1 females matured fewer eggs during their lifetime and their offspring (F2) had reduced egg-to-adult survival probability. Naturally laid clutches varied with host size up to a maximum, which probably reflects egg limitation. Clutches remained smaller than the calculated optimal (Lack) clutch size and females responded to high host availability with a decreased number of eggs laid. We thus conclude that large clutches may result in significantly smaller offspring with reduced fitness, and that host size as well as host availability influence the clutch size decision made by B. brevicornis females. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Insect Behavior Springer Journals

Resource-Dependent Clutch Size Decisions and Size-Fitness Relationships in a Gregarious Ectoparasitoid Wasp, Bracon brevicornis

Loading next page...
 
/lp/springer_journal/resource-dependent-clutch-size-decisions-and-size-fitness-ka1yo3jsqQ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Life Sciences; Entomology; Behavioral Sciences; Neurobiology; Agriculture; Animal Ecology; Evolutionary Biology
ISSN
0892-7553
eISSN
1572-8889
D.O.I.
10.1007/s10905-017-9632-2
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial