Resource bricolage and resource selection for parallel database systems

Resource bricolage and resource selection for parallel database systems Running parallel database systems in an environment with heterogeneous resources has become increasingly common, due to cluster evolution and increasing interest in moving applications into public clouds. Performance differences among machines in the same cluster pose new challenges for parallel database systems. First, for database systems running in a heterogeneous cluster, the default uniform data partitioning strategy may overload some of the slow machines, while at the same time it may underutilize the more powerful machines. Since the processing time of a parallel query is determined by the slowest machine, such an allocation strategy may result in a significant query performance degradation. Second, since machines might have varying resources or performance, different choices of machines may lead to different costs or performance for executing the same workload. By carefully selecting the most suitable machines for running a workload, we may achieve better performance with the same budget, or we may meet the same performance requirements with a lower cost. We address these challenges by introducing techniques we call resource bricolage and resource selection that improve database performance in heterogeneous environments. Our approaches quantify the performance differences among machines with various resources as they process workloads with diverse resource requirements. For the purpose of better resource utilization, we formalize the problem of minimizing workload execution time and view it as an optimization problem, and then, we employ linear programming to obtain a recommended data partitioning scheme. For the purpose of better resource selection, we formalize two problems: One minimizes the total workload execution time with a given budget, and the other minimizes the total budget with a given performance target. We then employ different mixed-integer programs to search for the optimal resource selection decisions. We verify the effectiveness of both resource bricolage and resource selection techniques with an extensive experimental study. The VLDB Journal Springer Journals

Resource bricolage and resource selection for parallel database systems

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Computer Science; Database Management
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial