Resource Allocations for Ultra-Reliable Low-Latency Communications

Resource Allocations for Ultra-Reliable Low-Latency Communications Ultra-reliable low-latency communications (URLLC) is a new feature to be considered for the fifth generation (5G) cellular systems. This feature is essential for the support of envisioned mission-critical applications, particularly in the realm of machine-type communications. These applications require that the messages, which are generally short-length packets, to be exchanged between a source and a destination with the high level of reliability and within a short period of time. The characteristics of URLLC do not fit directly in the conventional communication models. For instance, most of the existing communication models are developed considering moderate levels of reliability, neglecting the small effects of the feedback errors. However, even such small errors cannot be ignored for URLLC. This paper proposes a communication model for URLLC considering the reliabilities of both data and control channels. Then, the optimal and sub-optimal resource allocations are derived. We show that the proposed sub-optimal resource allocations have lower computational complexities with a negligible performance degradations compared to that of the optimal solutions. The results reveal that the possibility of performing only one retransmission can significantly reduce the required radio resources needed for data delivery compared to the case of performing a single transmission round. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Wireless Information Networks Springer Journals

Loading next page...
 
/lp/springer_journal/resource-allocations-for-ultra-reliable-low-latency-communications-8VDMcVRYnJ
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Engineering; Electrical Engineering
ISSN
1068-9605
eISSN
1572-8129
D.O.I.
10.1007/s10776-017-0360-5
Publisher site
See Article on Publisher Site

Abstract

Ultra-reliable low-latency communications (URLLC) is a new feature to be considered for the fifth generation (5G) cellular systems. This feature is essential for the support of envisioned mission-critical applications, particularly in the realm of machine-type communications. These applications require that the messages, which are generally short-length packets, to be exchanged between a source and a destination with the high level of reliability and within a short period of time. The characteristics of URLLC do not fit directly in the conventional communication models. For instance, most of the existing communication models are developed considering moderate levels of reliability, neglecting the small effects of the feedback errors. However, even such small errors cannot be ignored for URLLC. This paper proposes a communication model for URLLC considering the reliabilities of both data and control channels. Then, the optimal and sub-optimal resource allocations are derived. We show that the proposed sub-optimal resource allocations have lower computational complexities with a negligible performance degradations compared to that of the optimal solutions. The results reveal that the possibility of performing only one retransmission can significantly reduce the required radio resources needed for data delivery compared to the case of performing a single transmission round.

Journal

International Journal of Wireless Information NetworksSpringer Journals

Published: May 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off