Resonance functions in the theory of collisional broadening of molecule spectral lines at low temperatures

Resonance functions in the theory of collisional broadening of molecule spectral lines at low... Eleven resonance functions are calculated in the exact trajectory model, which can be used for calculation of broadening coefficients γ of molecular lines during interactions with atoms of inert gases at very low temperatures. These functions correspond to the atom-atom potential and the potential V(R, θ) written in terms of Legendre polynomials. The functions are represented in analytical form. The broadening coefficients γ are calculated for absorption lines of CO perturbed by He and Ar at temperatures T from 300 to 2 K using the potential V(R, θ). It is shown that the dependence γ(T) for low temperatures T is determined by the potential well depth. For the CO–He system, a comparison with the experimental data is performed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric and Oceanic Optics Springer Journals

Resonance functions in the theory of collisional broadening of molecule spectral lines at low temperatures

Loading next page...
 
/lp/springer_journal/resonance-functions-in-the-theory-of-collisional-broadening-of-td0JHdfOzx
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Physics; Optics, Lasers, Photonics, Optical Devices
ISSN
1024-8560
eISSN
2070-0393
D.O.I.
10.1134/S102485601704011X
Publisher site
See Article on Publisher Site

Abstract

Eleven resonance functions are calculated in the exact trajectory model, which can be used for calculation of broadening coefficients γ of molecular lines during interactions with atoms of inert gases at very low temperatures. These functions correspond to the atom-atom potential and the potential V(R, θ) written in terms of Legendre polynomials. The functions are represented in analytical form. The broadening coefficients γ are calculated for absorption lines of CO perturbed by He and Ar at temperatures T from 300 to 2 K using the potential V(R, θ). It is shown that the dependence γ(T) for low temperatures T is determined by the potential well depth. For the CO–He system, a comparison with the experimental data is performed.

Journal

Atmospheric and Oceanic OpticsSpringer Journals

Published: Aug 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off