Resistivity of Red Blood Cells Against High-Intensity, Short-Duration Electric Field Pulses Induced by Chelating Agents

Resistivity of Red Blood Cells Against High-Intensity, Short-Duration Electric Field Pulses... The interaction of human red blood cells (RBCs) with diethylenetriamine-pentaacetic acid (DTPA) or its Gd-complex (Magnevist, a widely used clinical magnetic resonance contrast agent containing free DTPA ligands) led to the following, obviously interrelated phenomena. (i) Both compounds protected erythrocytes against electrohemolysis in isotonic solutions caused by a high-intensity DC electric field pulse. (ii) The inhibition of electrohemolysis was observed only when cells were electropulsed in low-conductivity solutions. (iii) The uptake of Gd-DTPA by electropulsed RBCs was relatively low. (iv) (Gd-) DTPA reduced markedly deformability of erythrocytes, as revealed by the electrodeformation experiments using high-frequency electric fields. Taken together, the results indicate that (Gd-) DTPA produce stiffer erythrocytes that are more resistant to electric field exposure. The observed effects of the chelating agents on the mechanical properties and the electropermeabilization of RBCs must have an origin in molecular changes of the bilayer or membrane-coupled cytoskeleton, which, in turn, appear to result from an alteration of the ionic equilibrium (e.g., Ca2+ sequestration) in the vicinity of the cell membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Resistivity of Red Blood Cells Against High-Intensity, Short-Duration Electric Field Pulses Induced by Chelating Agents

Loading next page...
 
/lp/springer_journal/resistivity-of-red-blood-cells-against-high-intensity-short-duration-NePT59EoJC
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1999 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900542
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial