Resisting structural re-identification in anonymized social networks

Resisting structural re-identification in anonymized social networks We identify privacy risks associated with releasing network datasets and provide an algorithm that mitigates those risks. A network dataset is a graph representing entities connected by edges representing relations such as friendship, communication or shared activity. Maintaining privacy when publishing a network dataset is uniquely challenging because an individual’s network context can be used to identify them even if other identifying information is removed. In this paper, we introduce a parameterized model of structural knowledge available to the adversary and quantify the success of attacks on individuals in anonymized networks. We show that the risks of these attacks vary based on network structure and size and provide theoretical results that explain the anonymity risk in random networks. We then propose a novel approach to anonymizing network data that models aggregate network structure and allows analysis to be performed by sampling from the model. The approach guarantees anonymity for entities in the network while allowing accurate estimates of a variety of network measures with relatively little bias. The VLDB Journal Springer Journals

Resisting structural re-identification in anonymized social networks

Loading next page...
Copyright © 2010 by Springer-Verlag
Computer Science; Database Management
Publisher site
See Article on Publisher Site


  • Anonymizing bipartite graph data using safe groupings
    Cormode, G.; Srivastava, D.; Yu, T.; Zhang, Q.
  • An efficient algorithm for graph isomorphism
    Corneil, D.G.; Gotlieb, C.C.
  • Resisting structural re-identification in anonymized social networks
    Hay, M.; Miklau, G.; Jensen, D.D.; Towsley, D.F.; Weis, P.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial