Resistance of diamond optics to high-power fiber laser radiation

Resistance of diamond optics to high-power fiber laser radiation The resistance of optical windows and mirrors that are made of polycrystalline CVD diamonds (with a 25-mm diameter and 1.3-mm thickness) with a heat conductivity of 1970 W/mK is studied upon the radiation of the CW ytterbium laser (λ = 1.07 μm and the power is 10 kW). It is determined that the window withstands a power density of 11.7 MW/cm2, and a 25-layer interference mirror on a diamond plate was destroyed (without cooling) at 8.2 MW/cm2. The simulation of the water-cooled window showed that its maximum heating will not exceed 100°C at an incident power of 35 kW. It is shown that unique properties of the CVD diamond allow one to consider this material promising for applications in high-power lasers. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Microelectronics Springer Journals

Resistance of diamond optics to high-power fiber laser radiation

Loading next page...
 
/lp/springer_journal/resistance-of-diamond-optics-to-high-power-fiber-laser-radiation-hCfHHoivvD
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2012 by Pleiades Publishing, Ltd.
Subject
Engineering; Electrical Engineering
ISSN
1063-7397
eISSN
1608-3415
D.O.I.
10.1134/S106373971208015X
Publisher site
See Article on Publisher Site

Abstract

The resistance of optical windows and mirrors that are made of polycrystalline CVD diamonds (with a 25-mm diameter and 1.3-mm thickness) with a heat conductivity of 1970 W/mK is studied upon the radiation of the CW ytterbium laser (λ = 1.07 μm and the power is 10 kW). It is determined that the window withstands a power density of 11.7 MW/cm2, and a 25-layer interference mirror on a diamond plate was destroyed (without cooling) at 8.2 MW/cm2. The simulation of the water-cooled window showed that its maximum heating will not exceed 100°C at an incident power of 35 kW. It is shown that unique properties of the CVD diamond allow one to consider this material promising for applications in high-power lasers.

Journal

Russian MicroelectronicsSpringer Journals

Published: Nov 17, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off