Research on tool wear of milling nickel-based superalloy in cryogenic

Research on tool wear of milling nickel-based superalloy in cryogenic This paper presents the first comprehensive investigation on the serious problems of tool wear and service life in conventional milling nickel-based superalloy. A series of machining experiments were conducted at various combinations of cutting parameters in conventional and cryogenic at 77-K milling processes. The morphology and element compositions of tool processing surfaces were analyzed and measured by the scanning electron microscopy and an energy-dispersive spectrometer, respectively. Meanwhile, the carbide tool wear behavior and mechanism in cryogenic cooling condition were also discussed in detail. The new findings indicate that at low cutting speed, the adhesive wear is easily found for the conventional machining, and the oxidation wear is for the high speed. As well as the cutting depth and feed speed are all limited, that is, lower machining efficiency. In liquid nitrogen cryogenic condition, the tool wear is not apparent at low and medium speeds, so that we can choose larger cutting depth and feed speed. At high speed, a part of adhesion and diffusion wears can be found, that is, inconspicuous oxidative wear, and the chip already made the plastic change. Furthermore, the tool service life can be increased four times at high speed and the processing efficiency is also improved obviously. The use of the liquid nitrogen cryogenic processing method can effectively solve the problems of serious tool wear and the lower processing efficiency for the nickel-based superalloy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Research on tool wear of milling nickel-based superalloy in cryogenic

Loading next page...
 
/lp/springer_journal/research-on-tool-wear-of-milling-nickel-based-superalloy-in-cryogenic-2ejrAjoti8
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0079-6
Publisher site
See Article on Publisher Site

Abstract

This paper presents the first comprehensive investigation on the serious problems of tool wear and service life in conventional milling nickel-based superalloy. A series of machining experiments were conducted at various combinations of cutting parameters in conventional and cryogenic at 77-K milling processes. The morphology and element compositions of tool processing surfaces were analyzed and measured by the scanning electron microscopy and an energy-dispersive spectrometer, respectively. Meanwhile, the carbide tool wear behavior and mechanism in cryogenic cooling condition were also discussed in detail. The new findings indicate that at low cutting speed, the adhesive wear is easily found for the conventional machining, and the oxidation wear is for the high speed. As well as the cutting depth and feed speed are all limited, that is, lower machining efficiency. In liquid nitrogen cryogenic condition, the tool wear is not apparent at low and medium speeds, so that we can choose larger cutting depth and feed speed. At high speed, a part of adhesion and diffusion wears can be found, that is, inconspicuous oxidative wear, and the chip already made the plastic change. Furthermore, the tool service life can be increased four times at high speed and the processing efficiency is also improved obviously. The use of the liquid nitrogen cryogenic processing method can effectively solve the problems of serious tool wear and the lower processing efficiency for the nickel-based superalloy.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Feb 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off