Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode

Research on quantum efficiency and photoemission characteristics of exponential-doping GaN... Aimed at improving the actual photoemission performance of nanowire photocathode, an axial exponential-doping GaN nanowire photocathode is proposed. Based on two-dimensional continuity equation and finite difference method, the quantum efficiency of this exponential-doping GaN nanowire photocathode is obtained. The simulation results suggest that this structure of GaN nanowire photocathode can effectively obviate the difficulty in collecting the electrons escaping from side faces because a large part of carriers will escape from top surface under the built-in electric field. Besides, it is discovered that the optimal height of nanowires is 300 nm when the doping concentration of top surface is 1 × 1018 cm−3 and that of back interface is 1 × 1019 cm−3. Then, when the nanowires are arranged as array, the optimal light angle of incidence is approximately 60° by analyzing the electrons flow density of the array. By comparison of collection proportion of photoelectrons, the optimal nanowire spacing is 231 nm. This study demonstrates potential application value of exponential-doping GaN nanowire photocathode. The results can direct the preparation of this kind of photocathode. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Materials Science Springer Journals

Research on quantum efficiency and photoemission characteristics of exponential-doping GaN nanowire photocathode

Loading next page...
 
/lp/springer_journal/research-on-quantum-efficiency-and-photoemission-characteristics-of-IUOYLrqvNo
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Materials Science; Materials Science, general; Characterization and Evaluation of Materials; Polymer Sciences; Continuum Mechanics and Mechanics of Materials; Crystallography and Scattering Methods; Classical Mechanics
ISSN
0022-2461
eISSN
1573-4803
D.O.I.
10.1007/s10853-017-1394-x
Publisher site
See Article on Publisher Site

Abstract

Aimed at improving the actual photoemission performance of nanowire photocathode, an axial exponential-doping GaN nanowire photocathode is proposed. Based on two-dimensional continuity equation and finite difference method, the quantum efficiency of this exponential-doping GaN nanowire photocathode is obtained. The simulation results suggest that this structure of GaN nanowire photocathode can effectively obviate the difficulty in collecting the electrons escaping from side faces because a large part of carriers will escape from top surface under the built-in electric field. Besides, it is discovered that the optimal height of nanowires is 300 nm when the doping concentration of top surface is 1 × 1018 cm−3 and that of back interface is 1 × 1019 cm−3. Then, when the nanowires are arranged as array, the optimal light angle of incidence is approximately 60° by analyzing the electrons flow density of the array. By comparison of collection proportion of photoelectrons, the optimal nanowire spacing is 231 nm. This study demonstrates potential application value of exponential-doping GaN nanowire photocathode. The results can direct the preparation of this kind of photocathode.

Journal

Journal of Materials ScienceSpringer Journals

Published: Jul 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off