Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Research on machining characteristic of double-layer elastomer in pneumatic wheel method

Research on machining characteristic of double-layer elastomer in pneumatic wheel method For improvement of finishing effect to the laser hardening mold’s free-form surface with high hardness, double-layer elastic mechanics theory of pneumatic wheel based with softness consolidation abrasives (SCA) is analyzed. Under the annular stress around, ratio coefficient m of modulus of elasticity of abrasive layer to modulus of rubber layer and ratio coefficient n of thickness of abrasive layer to radius of stress have been bought in for establishing machining force model and deformation formula of double-layer elastic wheel. After that, a double-layer elastic model of the wheel has been established by ANSYS and the machining process has been simulated. Stress distribution and deformation rule are given by simulation. In the experiments, we use fiber to reinforce inner rubber layer and take binder to hold on abrasive particles. Microscopic analysis demonstrates that pneumatic wheel accords with the situation of double-layer elastic mechanic theory. Moreover, machining platform is established and empirical results show that pneumatic wheel can finish laser hardening mold’s free-form surface efficiently. And conclusion shows pneumatic wheel with lower factor n can help to decrease R a when it faces with concave surface and pneumatic wheel with higher factor n can improve machining efficiency to convex surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Research on machining characteristic of double-layer elastomer in pneumatic wheel method

Loading next page...
 
/lp/springer_journal/research-on-machining-characteristic-of-double-layer-elastomer-in-hyiL08sw14

References (26)

Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
DOI
10.1007/s00170-017-0226-0
Publisher site
See Article on Publisher Site

Abstract

For improvement of finishing effect to the laser hardening mold’s free-form surface with high hardness, double-layer elastic mechanics theory of pneumatic wheel based with softness consolidation abrasives (SCA) is analyzed. Under the annular stress around, ratio coefficient m of modulus of elasticity of abrasive layer to modulus of rubber layer and ratio coefficient n of thickness of abrasive layer to radius of stress have been bought in for establishing machining force model and deformation formula of double-layer elastic wheel. After that, a double-layer elastic model of the wheel has been established by ANSYS and the machining process has been simulated. Stress distribution and deformation rule are given by simulation. In the experiments, we use fiber to reinforce inner rubber layer and take binder to hold on abrasive particles. Microscopic analysis demonstrates that pneumatic wheel accords with the situation of double-layer elastic mechanic theory. Moreover, machining platform is established and empirical results show that pneumatic wheel can finish laser hardening mold’s free-form surface efficiently. And conclusion shows pneumatic wheel with lower factor n can help to decrease R a when it faces with concave surface and pneumatic wheel with higher factor n can improve machining efficiency to convex surface.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Mar 10, 2017

There are no references for this article.