Research on H500-Type High-Precision Vacuum Blackbody as a Calibration Standard for Infrared Remote Sensing

Research on H500-Type High-Precision Vacuum Blackbody as a Calibration Standard for Infrared... Based on the calibration requirements of vacuum low background aerospace infrared remote sensing radiance temperature, a high-precision vacuum blackbody (H500 type) is developed for the temperature range from − 93 °C to + 220 °C at the National Institute of Metrology, China. In this paper, the structure and the temperature control system of H500 are introduced, and its performance, such as heating rate and stabilization of temperature control, is tested under the vacuum and low-background condition (liquid-nitrogen-cooled shroud). At room temperature and atmospheric environment, the major technical parameters of this blackbody, such as emissivity and uniformity, are measured. The measurement principle of blackbody emissivity is based on the control of surrounding radiation. Temperature uniformity at the cavity bottom is measured using a standard infrared radiation thermometer. When the heating rate is 1 °C min−1, the time required for the temperature to stabilize is less than 50 min, and within 10 min, the variation in temperature is less than 0.01 °C. The emissivity value of the blackbody is higher than 0.996. Temperature uniformity at the bottom of the blackbody cavity is less than 0.03 °C. The uncertainty is less than 0.1 °C (k = 2) over the temperature range from − 93 °C to + 67 °C. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Thermophysics Springer Journals

Research on H500-Type High-Precision Vacuum Blackbody as a Calibration Standard for Infrared Remote Sensing

Loading next page...
 
/lp/springer_journal/research-on-h500-type-high-precision-vacuum-blackbody-as-a-calibration-TuDr26SkKN
Publisher
Springer US
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Physics; Condensed Matter Physics; Classical Mechanics; Industrial Chemistry/Chemical Engineering; Physical Chemistry
ISSN
0195-928X
eISSN
1572-9567
D.O.I.
10.1007/s10765-018-2371-6
Publisher site
See Article on Publisher Site

Abstract

Based on the calibration requirements of vacuum low background aerospace infrared remote sensing radiance temperature, a high-precision vacuum blackbody (H500 type) is developed for the temperature range from − 93 °C to + 220 °C at the National Institute of Metrology, China. In this paper, the structure and the temperature control system of H500 are introduced, and its performance, such as heating rate and stabilization of temperature control, is tested under the vacuum and low-background condition (liquid-nitrogen-cooled shroud). At room temperature and atmospheric environment, the major technical parameters of this blackbody, such as emissivity and uniformity, are measured. The measurement principle of blackbody emissivity is based on the control of surrounding radiation. Temperature uniformity at the cavity bottom is measured using a standard infrared radiation thermometer. When the heating rate is 1 °C min−1, the time required for the temperature to stabilize is less than 50 min, and within 10 min, the variation in temperature is less than 0.01 °C. The emissivity value of the blackbody is higher than 0.996. Temperature uniformity at the bottom of the blackbody cavity is less than 0.03 °C. The uncertainty is less than 0.1 °C (k = 2) over the temperature range from − 93 °C to + 67 °C.

Journal

International Journal of ThermophysicsSpringer Journals

Published: Mar 12, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off