Research on drum shearer speed control strategies under sudden-changing load

Research on drum shearer speed control strategies under sudden-changing load In order to reduce the dynamic load of cutting transmission system and maintain the coal productivity under sudden-changing load conditions, the drum speed control strategy and traction-drum speed combined control strategy were proposed to adapt to different sudden-changing load conditions based on analyzing the influence factors of drum load and productivity. When sudden-changing load is small, the drum speed control strategy is adopted; when sudden-changing load is large, the traction-drum speed combined control strategy is adopted. The model of cutting transmission system has been established and analyzed, and the results show that the proposed strategies can not only reduce the dynamic load effectively, but also maintain the highly coal productivity under sudden-changing load conditions. Aiming at the overshoot of system load in the variable speed process, the speed variation rate of cutting motor of the two control strategies was optimized, respectively, and the load overshoot can be reduced effectively. The conclusions have been verified by building the test bench. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of the Brazilian Society of Mechanical Sciences and Engineering Springer Journals

Research on drum shearer speed control strategies under sudden-changing load

Loading next page...
 
/lp/springer_journal/research-on-drum-shearer-speed-control-strategies-under-sudden-RaySLbWH1x
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by The Brazilian Society of Mechanical Sciences and Engineering
Subject
Engineering; Mechanical Engineering
ISSN
1678-5878
eISSN
1806-3691
D.O.I.
10.1007/s40430-018-1252-z
Publisher site
See Article on Publisher Site

Abstract

In order to reduce the dynamic load of cutting transmission system and maintain the coal productivity under sudden-changing load conditions, the drum speed control strategy and traction-drum speed combined control strategy were proposed to adapt to different sudden-changing load conditions based on analyzing the influence factors of drum load and productivity. When sudden-changing load is small, the drum speed control strategy is adopted; when sudden-changing load is large, the traction-drum speed combined control strategy is adopted. The model of cutting transmission system has been established and analyzed, and the results show that the proposed strategies can not only reduce the dynamic load effectively, but also maintain the highly coal productivity under sudden-changing load conditions. Aiming at the overshoot of system load in the variable speed process, the speed variation rate of cutting motor of the two control strategies was optimized, respectively, and the load overshoot can be reduced effectively. The conclusions have been verified by building the test bench.

Journal

Journal of the Brazilian Society of Mechanical Sciences and EngineeringSpringer Journals

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off