Research on denoising sparse autoencoder

Research on denoising sparse autoencoder Autoencoder can learn the structure of data adaptively and represent data efficiently. These properties make autoencoder not only suit huge volume and variety of data well but also overcome expensive designing cost and poor generalization. Moreover, using autoencoder in deep learning to implement feature extraction could draw better classification accuracy. However, there exist poor robustness and overfitting problems when utilizing autoencoder. In order to extract useful features, meanwhile improve robustness and overcome overfitting, we studied denoising sparse autoencoder through adding corrupting operation and sparsity constraint to traditional autoencoder. The results suggest that different autoencoders mentioned in this paper have some close relation and the model we researched can extract interesting features which can reconstruct original data well. In addition, all results show a promising approach to utilizing the proposed autoencoder to build deep models. International Journal of Machine Learning and Cybernetics Springer Journals

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Complex Systems; Systems Biology; Pattern Recognition
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial