Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model

Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model A three-dimension (3D) finite element (FE) end milling model with equivalent homogenous material (EHM) model, which was drawn from the quasi-static and SHPB (Split Hopkinson pressure bar) tests, has been developed by using ABAQUS/Explicit in order to describe the machining process of SiCp/Al6063/30P composites. The model is verified by milling experiments and it is found that the predicted milling forces at different combinations of feed rate and rotation speed are consistent with those in milling experiments, and the prediction error of the peak value of F y and F x can be controlled within 20%. Moreover, the general shapes of the predicted chips are very similar to the experimental ones, but the application of EHM material model leading to the limitation of the simulated chip morphology such as cracks on chip contact surface and free surface caused by the existence of hard SiC particles cannot be described. Hence, further microstructure-level 3D FEM model which can reveal the interactions between particles and matrix and their effect on the chip formation mechanism of SiCp/Al6063composites becomes very necessary. The International Journal of Advanced Manufacturing Technology Springer Journals

Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial