Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model

Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model A three-dimension (3D) finite element (FE) end milling model with equivalent homogenous material (EHM) model, which was drawn from the quasi-static and SHPB (Split Hopkinson pressure bar) tests, has been developed by using ABAQUS/Explicit in order to describe the machining process of SiCp/Al6063/30P composites. The model is verified by milling experiments and it is found that the predicted milling forces at different combinations of feed rate and rotation speed are consistent with those in milling experiments, and the prediction error of the peak value of F y and F x can be controlled within 20%. Moreover, the general shapes of the predicted chips are very similar to the experimental ones, but the application of EHM material model leading to the limitation of the simulated chip morphology such as cracks on chip contact surface and free surface caused by the existence of hard SiC particles cannot be described. Hence, further microstructure-level 3D FEM model which can reveal the interactions between particles and matrix and their effect on the chip formation mechanism of SiCp/Al6063composites becomes very necessary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Research on 3D milling simulation of SiCp/Al composite based on a phenomenological model

Loading next page...
 
/lp/springer_journal/research-on-3d-milling-simulation-of-sicp-al-composite-based-on-a-KC0GVWFGoF
Publisher
Springer London
Copyright
Copyright © 2017 by Springer-Verlag London
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-0315-0
Publisher site
See Article on Publisher Site

Abstract

A three-dimension (3D) finite element (FE) end milling model with equivalent homogenous material (EHM) model, which was drawn from the quasi-static and SHPB (Split Hopkinson pressure bar) tests, has been developed by using ABAQUS/Explicit in order to describe the machining process of SiCp/Al6063/30P composites. The model is verified by milling experiments and it is found that the predicted milling forces at different combinations of feed rate and rotation speed are consistent with those in milling experiments, and the prediction error of the peak value of F y and F x can be controlled within 20%. Moreover, the general shapes of the predicted chips are very similar to the experimental ones, but the application of EHM material model leading to the limitation of the simulated chip morphology such as cracks on chip contact surface and free surface caused by the existence of hard SiC particles cannot be described. Hence, further microstructure-level 3D FEM model which can reveal the interactions between particles and matrix and their effect on the chip formation mechanism of SiCp/Al6063composites becomes very necessary.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Apr 9, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off