Research of the processing technology for time complex event based on LSTM

Research of the processing technology for time complex event based on LSTM With the huge amount of data, it is increasingly meaningful to combine different business system data with potential values. In the traditional event description, the input event flow of the event engine is a single atomic event type. The event predicate constraint contains simple attribute value, comparison operation and simple aggregation operation. The time constraint between events always simply. This makes the traditional detection method cannot meet the requirements such as financial, medical and other relatively accurate time requirements, event predicate constraints require more complex applications. Thus, this paper introduces the long short-term memory network model (LSTM), designs a multivariate event input to process these data based on TCN quantitative timing constraint representation model and predicate constraint representation model. In this paper, an innovative method makes the complex event processing technology more high efficient. By the analysis 200 million records of 2045 stocks, the results show that the processing technology of the complex events is more effective, more efficient. Keywords Long short-term memory  Complex event processing  Temporal constraint network  Timing feature 1 Introduction technologies [1]. But at present, users can only intuitively perceive single system data behavioral event in most dis- In recent years, interactive heterogeneous http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cluster Computing Springer Journals

Research of the processing technology for time complex event based on LSTM

Loading next page...
 
/lp/springer_journal/research-of-the-processing-technology-for-time-complex-event-based-on-z2LKBMLAXw
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Computer Science; Processor Architectures; Operating Systems; Computer Communication Networks
ISSN
1386-7857
eISSN
1573-7543
D.O.I.
10.1007/s10586-018-2765-z
Publisher site
See Article on Publisher Site

Abstract

With the huge amount of data, it is increasingly meaningful to combine different business system data with potential values. In the traditional event description, the input event flow of the event engine is a single atomic event type. The event predicate constraint contains simple attribute value, comparison operation and simple aggregation operation. The time constraint between events always simply. This makes the traditional detection method cannot meet the requirements such as financial, medical and other relatively accurate time requirements, event predicate constraints require more complex applications. Thus, this paper introduces the long short-term memory network model (LSTM), designs a multivariate event input to process these data based on TCN quantitative timing constraint representation model and predicate constraint representation model. In this paper, an innovative method makes the complex event processing technology more high efficient. By the analysis 200 million records of 2045 stocks, the results show that the processing technology of the complex events is more effective, more efficient. Keywords Long short-term memory  Complex event processing  Temporal constraint network  Timing feature 1 Introduction technologies [1]. But at present, users can only intuitively perceive single system data behavioral event in most dis- In recent years, interactive heterogeneous

Journal

Cluster ComputingSpringer Journals

Published: May 29, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off