Access the full text.
Sign up today, get DeepDyve free for 14 days.
With the huge amount of data, it is increasingly meaningful to combine different business system data with potential values. In the traditional event description, the input event flow of the event engine is a single atomic event type. The event predicate constraint contains simple attribute value, comparison operation and simple aggregation operation. The time constraint between events always simply. This makes the traditional detection method cannot meet the requirements such as financial, medical and other relatively accurate time requirements, event predicate constraints require more complex applications. Thus, this paper introduces the long short-term memory network model (LSTM), designs a multivariate event input to process these data based on TCN quantitative timing constraint representation model and predicate constraint representation model. In this paper, an innovative method makes the complex event processing technology more high efficient. By the analysis 200 million records of 2045 stocks, the results show that the processing technology of the complex events is more effective, more efficient.
Cluster Computing – Springer Journals
Published: May 29, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.