Repeat Sales Index for Thin Markets

Repeat Sales Index for Thin Markets The repeat sales model is commonly used to construct reliable house price indices in absence of individual characteristics of the real estate. Several adaptations of the original model by Bailey et al. (J Am Stat Assoc 58:933–942, 1963) are proposed in literature. They all have in common using a dummy variable approach for measuring price indices. In order to reduce the impact of transaction price noise on the estimates of price indices, Goetzmann (J Real Estate Finance Econ 5:5–53, 1992) used a random walk with drift process for the log price levels instead of the dummy variable approach. The model that is proposed in this article can be interpreted as a generalization of the Goetzmann methodology. We replace the random walk with drift model by a structural time series model, in particular by a local linear trend model in which both the level and the drift parameter can vary over time. An additional variable—the reciprocal of the time between sales—is included in the repeat sales model to deal with the effect of the time between sales on the estimated returns. This approach is robust can be applied in thin markets where relatively few selling prices are available. Contrary to the dummy variable approach, the structural time series model enables prediction of the price level based on preceding and subsequent information, implying that even for particular time periods where no observations are available an estimate of the price level can be provided. Conditional on the variance parameters, an estimate of the price level can be obtained by applying regression in the general linear model with a prior for the price level, generated by the local linear trend model. The variance parameters can be estimated by maximum likelihood. The model is applied to several subsets of selling prices in the Netherlands. Results are compared to standard repeat sales models, including the Goetzmann model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Repeat Sales Index for Thin Markets

Loading next page...
 
/lp/springer_journal/repeat-sales-index-for-thin-markets-1oSTmMLniP
Publisher
Springer US
Copyright
Copyright © 2009 by The Author(s)
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-009-9203-1
Publisher site
See Article on Publisher Site

Abstract

The repeat sales model is commonly used to construct reliable house price indices in absence of individual characteristics of the real estate. Several adaptations of the original model by Bailey et al. (J Am Stat Assoc 58:933–942, 1963) are proposed in literature. They all have in common using a dummy variable approach for measuring price indices. In order to reduce the impact of transaction price noise on the estimates of price indices, Goetzmann (J Real Estate Finance Econ 5:5–53, 1992) used a random walk with drift process for the log price levels instead of the dummy variable approach. The model that is proposed in this article can be interpreted as a generalization of the Goetzmann methodology. We replace the random walk with drift model by a structural time series model, in particular by a local linear trend model in which both the level and the drift parameter can vary over time. An additional variable—the reciprocal of the time between sales—is included in the repeat sales model to deal with the effect of the time between sales on the estimated returns. This approach is robust can be applied in thin markets where relatively few selling prices are available. Contrary to the dummy variable approach, the structural time series model enables prediction of the price level based on preceding and subsequent information, implying that even for particular time periods where no observations are available an estimate of the price level can be provided. Conditional on the variance parameters, an estimate of the price level can be obtained by applying regression in the general linear model with a prior for the price level, generated by the local linear trend model. The variance parameters can be estimated by maximum likelihood. The model is applied to several subsets of selling prices in the Netherlands. Results are compared to standard repeat sales models, including the Goetzmann model.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Aug 11, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial