Repeat Sales Index for Thin Markets

Repeat Sales Index for Thin Markets The repeat sales model is commonly used to construct reliable house price indices in absence of individual characteristics of the real estate. Several adaptations of the original model by Bailey et al. (J Am Stat Assoc 58:933–942, 1963) are proposed in literature. They all have in common using a dummy variable approach for measuring price indices. In order to reduce the impact of transaction price noise on the estimates of price indices, Goetzmann (J Real Estate Finance Econ 5:5–53, 1992) used a random walk with drift process for the log price levels instead of the dummy variable approach. The model that is proposed in this article can be interpreted as a generalization of the Goetzmann methodology. We replace the random walk with drift model by a structural time series model, in particular by a local linear trend model in which both the level and the drift parameter can vary over time. An additional variable—the reciprocal of the time between sales—is included in the repeat sales model to deal with the effect of the time between sales on the estimated returns. This approach is robust can be applied in thin markets where relatively few selling prices are available. Contrary to the dummy variable approach, the structural time series model enables prediction of the price level based on preceding and subsequent information, implying that even for particular time periods where no observations are available an estimate of the price level can be provided. Conditional on the variance parameters, an estimate of the price level can be obtained by applying regression in the general linear model with a prior for the price level, generated by the local linear trend model. The variance parameters can be estimated by maximum likelihood. The model is applied to several subsets of selling prices in the Netherlands. Results are compared to standard repeat sales models, including the Goetzmann model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Real Estate Finance and Economics Springer Journals

Repeat Sales Index for Thin Markets

Loading next page...
 
/lp/springer_journal/repeat-sales-index-for-thin-markets-1oSTmMLniP
Publisher
Springer Journals
Copyright
Copyright © 2009 by The Author(s)
Subject
Economics; Regional/Spatial Science; Financial Services
ISSN
0895-5638
eISSN
1573-045X
D.O.I.
10.1007/s11146-009-9203-1
Publisher site
See Article on Publisher Site

Abstract

The repeat sales model is commonly used to construct reliable house price indices in absence of individual characteristics of the real estate. Several adaptations of the original model by Bailey et al. (J Am Stat Assoc 58:933–942, 1963) are proposed in literature. They all have in common using a dummy variable approach for measuring price indices. In order to reduce the impact of transaction price noise on the estimates of price indices, Goetzmann (J Real Estate Finance Econ 5:5–53, 1992) used a random walk with drift process for the log price levels instead of the dummy variable approach. The model that is proposed in this article can be interpreted as a generalization of the Goetzmann methodology. We replace the random walk with drift model by a structural time series model, in particular by a local linear trend model in which both the level and the drift parameter can vary over time. An additional variable—the reciprocal of the time between sales—is included in the repeat sales model to deal with the effect of the time between sales on the estimated returns. This approach is robust can be applied in thin markets where relatively few selling prices are available. Contrary to the dummy variable approach, the structural time series model enables prediction of the price level based on preceding and subsequent information, implying that even for particular time periods where no observations are available an estimate of the price level can be provided. Conditional on the variance parameters, an estimate of the price level can be obtained by applying regression in the general linear model with a prior for the price level, generated by the local linear trend model. The variance parameters can be estimated by maximum likelihood. The model is applied to several subsets of selling prices in the Netherlands. Results are compared to standard repeat sales models, including the Goetzmann model.

Journal

The Journal of Real Estate Finance and EconomicsSpringer Journals

Published: Aug 11, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off