Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster

Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness... To understand specific symbiotic relationships ensuring stable existing of the bacterium Wolbachia in laboratory strains of Drosophila melanogaster, the imago lifespan and senescence rate, as well as competitiveness, have been evaluated as components of fitness in females from the following laboratory strains: (1) inbred strain 95 infected with Wolbachia; (2) two uninfected strains obtained by tetracycline treatment that were genetically similar to strain 95; and (3) two control, uninfected, wild-type laboratory strains that were used to assess the possible effects of the antibiotic on the studied characters in the absence of Wolbachia. The results have shown that infected females have longer lifespan and competitiveness than females with the same genotype uninfected with Wolbachia. The increase in the senescence and mortality rates with age was also slower in infected females. It is noteworthy that tetracycline does not affect the lifespan of females from the two control, uninfected, wild-type strains. Therefore, the antibiotic is not the cause of the positive changes in fitness that were observed in infected females. The obtained results are the first direct evidence that the relationships in the Wolbachia-D. melanogaster symbiotic system are mutualistic rather than parasitic, at least in micropopulations adapted to laboratory conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Removing endosymbiotic Wolbachia specifically decreases lifespan of females and competitiveness in a laboratory strain of Drosophila melanogaster

Loading next page...
 
/lp/springer_journal/removing-endosymbiotic-wolbachia-specifically-decreases-lifespan-of-BKXDVW9tv0
Publisher
Springer Journals
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795407100080
Publisher site
See Article on Publisher Site

Abstract

To understand specific symbiotic relationships ensuring stable existing of the bacterium Wolbachia in laboratory strains of Drosophila melanogaster, the imago lifespan and senescence rate, as well as competitiveness, have been evaluated as components of fitness in females from the following laboratory strains: (1) inbred strain 95 infected with Wolbachia; (2) two uninfected strains obtained by tetracycline treatment that were genetically similar to strain 95; and (3) two control, uninfected, wild-type laboratory strains that were used to assess the possible effects of the antibiotic on the studied characters in the absence of Wolbachia. The results have shown that infected females have longer lifespan and competitiveness than females with the same genotype uninfected with Wolbachia. The increase in the senescence and mortality rates with age was also slower in infected females. It is noteworthy that tetracycline does not affect the lifespan of females from the two control, uninfected, wild-type strains. Therefore, the antibiotic is not the cause of the positive changes in fitness that were observed in infected females. The obtained results are the first direct evidence that the relationships in the Wolbachia-D. melanogaster symbiotic system are mutualistic rather than parasitic, at least in micropopulations adapted to laboratory conditions.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Oct 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off