Removing biases in computed returns

Removing biases in computed returns This paper presents a straightforward method for asymptotically removing the well-known upward bias in observed returns of equally-weighted portfolios. Our method removes all of the bias due to any random transient errors such as bid-ask bounce and allows for the estimation of short horizon returns. We apply our method to the CRSP equally-weighted monthly return indexes for the NYSE, Amex, and NASDAQ and show that the bias is cumulative. In particular, a NASDAQ index (with a base of 100 in 1973) grows to the level of 17,975 by 2006, but nearly half of the increase is due to cumulative bias. We also conduct a simulation in which we simulate true prices and set spreads according to a discrete pricing grid. True prices are then not necessarily at the midpoint of the spread. In the simulation we compare our method to calculating returns based on observed closing quote midpoints and find that the returns from our method are statistically indistinguishable from the (simulated) true returns. While the mid-quote method results in an improvement over using closing transaction prices, it still results in a statistically significant amount of upward bias. We demonstrate that applying our methodology results in a reversal of the relative performance of NASDAQ stocks versus NYSE stocks over a 25 year window. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Review of Quantitative Finance and Accounting Springer Journals

Loading next page...
 
/lp/springer_journal/removing-biases-in-computed-returns-h52d0NsAEd
Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Finance; Corporate Finance; Accounting/Auditing; Econometrics; Operation Research/Decision Theory
ISSN
0924-865X
eISSN
1573-7179
D.O.I.
10.1007/s11156-009-0161-8
Publisher site
See Article on Publisher Site

Abstract

This paper presents a straightforward method for asymptotically removing the well-known upward bias in observed returns of equally-weighted portfolios. Our method removes all of the bias due to any random transient errors such as bid-ask bounce and allows for the estimation of short horizon returns. We apply our method to the CRSP equally-weighted monthly return indexes for the NYSE, Amex, and NASDAQ and show that the bias is cumulative. In particular, a NASDAQ index (with a base of 100 in 1973) grows to the level of 17,975 by 2006, but nearly half of the increase is due to cumulative bias. We also conduct a simulation in which we simulate true prices and set spreads according to a discrete pricing grid. True prices are then not necessarily at the midpoint of the spread. In the simulation we compare our method to calculating returns based on observed closing quote midpoints and find that the returns from our method are statistically indistinguishable from the (simulated) true returns. While the mid-quote method results in an improvement over using closing transaction prices, it still results in a statistically significant amount of upward bias. We demonstrate that applying our methodology results in a reversal of the relative performance of NASDAQ stocks versus NYSE stocks over a 25 year window.

Journal

Review of Quantitative Finance and AccountingSpringer Journals

Published: Jan 21, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off