Remove mechanisms of sulfamethazine by goethite: the contributions of pH and ionic strength

Remove mechanisms of sulfamethazine by goethite: the contributions of pH and ionic strength Sulfamethazine (SMT) as an ionic compound can enter the soil environment via the application of livestock wastes in agricultural fields and via the abuse of pharmaceuticals. Goethite as one of the most important iron oxides in soil might interact with SMT and influence its environmental behavior and bioavailability in soil. In this study, the sorption properties of SMT on goethite under different solution conditions were investigated. The sorption isotherm exhibited a significant nonlinear shape and desorption hysteresis, while the data could be fitted well by the Freundlich model with the correlation coefficient R 2 = 0.991. Sorption capacity initially increased and then decreased as pH values increased from 3 to 13, while the strongest uptake occurred in neutral conditions. The sorption increased slightly and then kept relatively constant as the ionic strength of the solution increased. The results indicated that the sorption mechanism would be altered in different solution conditions. In acidic and neutral conditions, the π–π electron donor–acceptor interactions and outer- and inner-sphere complexions might be the dominating sorption mechanisms. The sorption in alkali conditions might be dominated by electrostatic interactions between SMT and goethite. It should be noted that the heterogeneous sorption affinity of SMT on goethite under various solution conditions will influence its environmental fate. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Remove mechanisms of sulfamethazine by goethite: the contributions of pH and ionic strength

Loading next page...
 
/lp/springer_journal/remove-mechanisms-of-sulfamethazine-by-goethite-the-contributions-of-tAbmmguUF6
Publisher
Springer Netherlands
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2472-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial