Removal of phenol in aqueous solution by adsorption onto green synthesized coinage nanoparticles beads

Removal of phenol in aqueous solution by adsorption onto green synthesized coinage nanoparticles... The adsorption of phenol from aqueous solution was carried out by using alginate-stabilized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) beads as adsorbents. The resulting AgNPs and AuNPs were characterized by scanning electron microscope, UV–visible spectroscopy and Fourier transform infrared spectroscopy. Batch adsorption studies have shown that removal is dependent upon process parameters like initial concentration, contact time, pH and adsorbent dosage. The adsorption data obtained from batch studies at optimized conditions have been subjected to Freundlich and Langmuir isotherm studies. The pseudo-first-order and pseudo-second-order kinetic models were also applied to the experimental data. Phenol was effectively (90.0 ± 0.8 %) removed from the aqueous solution using alginate-stabilized AuNPs beads as the adsorption process. Desorption studies were made to elucidate recovery of the adsorbate and adsorbent for the economic competitiveness of the removal system. The alginate-stabilized AgNPs and AuNPs beads were found to be good adsorbents for adsorption of phenol from the aqueous solution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Removal of phenol in aqueous solution by adsorption onto green synthesized coinage nanoparticles beads

Loading next page...
 
/lp/springer_journal/removal-of-phenol-in-aqueous-solution-by-adsorption-onto-green-pRZmQgFFjk
Publisher
Springer Netherlands
Copyright
Copyright © 2014 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-014-1898-9
Publisher site
See Article on Publisher Site

Abstract

The adsorption of phenol from aqueous solution was carried out by using alginate-stabilized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) beads as adsorbents. The resulting AgNPs and AuNPs were characterized by scanning electron microscope, UV–visible spectroscopy and Fourier transform infrared spectroscopy. Batch adsorption studies have shown that removal is dependent upon process parameters like initial concentration, contact time, pH and adsorbent dosage. The adsorption data obtained from batch studies at optimized conditions have been subjected to Freundlich and Langmuir isotherm studies. The pseudo-first-order and pseudo-second-order kinetic models were also applied to the experimental data. Phenol was effectively (90.0 ± 0.8 %) removed from the aqueous solution using alginate-stabilized AuNPs beads as the adsorption process. Desorption studies were made to elucidate recovery of the adsorbate and adsorbent for the economic competitiveness of the removal system. The alginate-stabilized AgNPs and AuNPs beads were found to be good adsorbents for adsorption of phenol from the aqueous solution.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Dec 25, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off