Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants

Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins... Remorins form a superfamily of plant-specific plasma membrane/lipid-raft-associated proteins of unknown structure and function. Using specific antibodies, we localized tomato remorin 1 to apical tissues, leaf primordia and vascular traces. The deduced remorin protein sequence contains a predicted coiled coil-domain, suggesting its participation in protein–protein interactions. Circular dichroism revealed that recombinant potato remorin contains an α-helical region that forms a functional coiled-coil domain. Electron microscopy of purified preparations of four different recombinant remorins, one from potato, two divergent isologs from tomato, and one from Arabidopsis thaliana, demonstrated that the proteins form highly similar filamentous structures. The diameters of the negatively-stained filaments ranged from 4.6–7.4 nm for potato remorin 1, 4.3–6.2 nm for tomato remorin 1, 5.7–7.5 nm for tomato remorin 2, and 5.7–8.0 nm for Arabidopsis Dbp. Highly polymerized remorin 1 was detected in glutaraldehyde-crosslinked tomato plasma membrane preparations and a population of the protein was immunolocalized in tomato root tips to structures associated with discrete regions of the plasma membrane. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Remorins form a novel family of coiled coil-forming oligomeric and filamentous proteins associated with apical, vascular and embryonic tissues in plants

Loading next page...
 
/lp/springer_journal/remorins-form-a-novel-family-of-coiled-coil-forming-oligomeric-and-vJ96s3Kafy
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2004 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-004-1520-4
Publisher site
See Article on Publisher Site

Abstract

Remorins form a superfamily of plant-specific plasma membrane/lipid-raft-associated proteins of unknown structure and function. Using specific antibodies, we localized tomato remorin 1 to apical tissues, leaf primordia and vascular traces. The deduced remorin protein sequence contains a predicted coiled coil-domain, suggesting its participation in protein–protein interactions. Circular dichroism revealed that recombinant potato remorin contains an α-helical region that forms a functional coiled-coil domain. Electron microscopy of purified preparations of four different recombinant remorins, one from potato, two divergent isologs from tomato, and one from Arabidopsis thaliana, demonstrated that the proteins form highly similar filamentous structures. The diameters of the negatively-stained filaments ranged from 4.6–7.4 nm for potato remorin 1, 4.3–6.2 nm for tomato remorin 1, 5.7–7.5 nm for tomato remorin 2, and 5.7–8.0 nm for Arabidopsis Dbp. Highly polymerized remorin 1 was detected in glutaraldehyde-crosslinked tomato plasma membrane preparations and a population of the protein was immunolocalized in tomato root tips to structures associated with discrete regions of the plasma membrane.

Journal

Plant Molecular BiologySpringer Journals

Published: Jan 4, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off