Reliability-based topology optimization of continuum structures subject to local stress constraints

Reliability-based topology optimization of continuum structures subject to local stress constraints Topology optimization of continuum structures is a challenging problem to solve, when stress constraints are considered for every finite element in the mesh. Difficulties are compounding in the reliability-based formulation, since a probabilistic problem needs to be solved for each stress constraint. This paper proposes a methodology to solve reliability-based topology optimization problems of continuum domains with stress constraints and uncertainties in magnitude of applied loads considering the whole set of local stress constrains, without using aggregation techniques. Probabilistic constraints are handled via a first-order approach, where the principle of superposition is used to alleviate the computational burden associated with inner optimization problems. Augmented Lagrangian method is used to solve the outer problem, where all stress constraints are included in the augmented Lagrangian function; hence sensitivity analysis may be performed only for the augmented Lagrangian function, instead of for each stress constraint. Two example problems are addressed, for which crisp black and white topologies are obtained. The proposed methodology is shown to be accurate by checking reliability indices of final topologies with Monte Carlo Simulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Structural and Multidisciplinary Optimization Springer Journals

Reliability-based topology optimization of continuum structures subject to local stress constraints

Loading next page...
 
/lp/springer_journal/reliability-based-topology-optimization-of-continuum-structures-zntzKsWE5F
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Theoretical and Applied Mechanics; Computational Mathematics and Numerical Analysis; Engineering Design
ISSN
1615-147X
eISSN
1615-1488
D.O.I.
10.1007/s00158-017-1865-3
Publisher site
See Article on Publisher Site

Abstract

Topology optimization of continuum structures is a challenging problem to solve, when stress constraints are considered for every finite element in the mesh. Difficulties are compounding in the reliability-based formulation, since a probabilistic problem needs to be solved for each stress constraint. This paper proposes a methodology to solve reliability-based topology optimization problems of continuum domains with stress constraints and uncertainties in magnitude of applied loads considering the whole set of local stress constrains, without using aggregation techniques. Probabilistic constraints are handled via a first-order approach, where the principle of superposition is used to alleviate the computational burden associated with inner optimization problems. Augmented Lagrangian method is used to solve the outer problem, where all stress constraints are included in the augmented Lagrangian function; hence sensitivity analysis may be performed only for the augmented Lagrangian function, instead of for each stress constraint. Two example problems are addressed, for which crisp black and white topologies are obtained. The proposed methodology is shown to be accurate by checking reliability indices of final topologies with Monte Carlo Simulation.

Journal

Structural and Multidisciplinary OptimizationSpringer Journals

Published: Nov 28, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off