Relevance vector machines using weighted expected squared distance for ore grade estimation with incomplete data

Relevance vector machines using weighted expected squared distance for ore grade estimation with... Accurate ore grade estimation is crucial to mineral resources evaluation and exploration. In this paper, we consider the borehole data collected from the Solwara 1 deposit, where the hydrothermal sulfide ore body is quite complicated with incomplete ore grade values. To solve this estimation problem, the relevance vector machine (RVM) and the expected squared distance (ESD) algorithm are incorporated into one regression model. Moreover, we improve the ESD algorithm by weighting the attributes of the data set and propose the weighted expected squared distance (WESD). In this paper, we uncover the symbiosis characteristics among different elements of the deposits by statistical analysis, which leads to estimating certain metal based on the data of other elements instead of on geographical position. The proposed WESD-RVM features high sparsity and accuracy, as well as the capability of handling incomplete data. Effectiveness of the proposed model is demonstrated by comparing with other estimating algorithms, such as inverse distance weighted method and Kriging algorithm which utilize only geographical spatial coordinates for inputs; extreme learning machine, which is unable to deal with incomplete data; and ordinary ESD based RVM regression model without entropy weighted distance. The experimental results show that the proposed WESD-RVM outperforms other methods with considerable predictive and generalizing ability. International Journal of Machine Learning and Cybernetics Springer Journals

Relevance vector machines using weighted expected squared distance for ore grade estimation with incomplete data

Loading next page...
Springer Berlin Heidelberg
Copyright © 2016 by Springer-Verlag Berlin Heidelberg
Engineering; Computational Intelligence; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Complex Systems; Systems Biology; Pattern Recognition
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial