Relevance of sink-size estimation for within-field zone delineation in vineyards

Relevance of sink-size estimation for within-field zone delineation in vineyards Source to sink size ratio, i.e.: the relative abundance of photosynthetically active organs (leaves) with regards to photosynthate demanding organs (mainly bunches), is widely known to be one of the main drivers of grape oenological quality. However, due to the difficulty of remote sink size estimation, Precision Viticulture (PV) has been mainly based on within-field zone delineation using vegetation indices. This approach has given only moderately satisfactory results for discriminating zones with differential quality. The aim of this work was to investigate an approach to delineate within-vineyard quality zones that includes an estimator of sink size in the data-set. The study was carried out during two consecutive seasons on a 4.2 ha gobelet-trained cv. ‘Tempranillo’ vineyard. Zone delineation was performed using Normalized Difference Vegetation Index (NDVI), soil apparent electrical conductivity (ECa) and bunch number (BN) data. These variables were considered separately, in pairs, or the three altogether, using fuzzy k-means cluster analysis for combinations. The zones delineated based on single variables did not allow a sufficient discrimination for grape composition at harvest, NDVI being the only variable that by itself resulted in zones that to some extent differed in grape composition. On the contrary, when two variables were combined, discrimination in terms of grape composition improved remarkably, provided the sink size estimation variable (BN) was included in the combination. Lastly, the combination of the three variables yielded the best discriminating zoning, improving slightly on those provided by NDVI + BN and ECa + BN combinations. Thus, the relevance of including a variable related to sink size (in this case the number of bunches per plant) has been confirmed, which makes its consideration highly advisable for any PV work aiming at zone delineation for grape quality purposes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Relevance of sink-size estimation for within-field zone delineation in vineyards

Loading next page...
 
/lp/springer_journal/relevance-of-sink-size-estimation-for-within-field-zone-delineation-in-rq5EYq6l8T
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media New York
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-016-9450-0
Publisher site
See Article on Publisher Site

Abstract

Source to sink size ratio, i.e.: the relative abundance of photosynthetically active organs (leaves) with regards to photosynthate demanding organs (mainly bunches), is widely known to be one of the main drivers of grape oenological quality. However, due to the difficulty of remote sink size estimation, Precision Viticulture (PV) has been mainly based on within-field zone delineation using vegetation indices. This approach has given only moderately satisfactory results for discriminating zones with differential quality. The aim of this work was to investigate an approach to delineate within-vineyard quality zones that includes an estimator of sink size in the data-set. The study was carried out during two consecutive seasons on a 4.2 ha gobelet-trained cv. ‘Tempranillo’ vineyard. Zone delineation was performed using Normalized Difference Vegetation Index (NDVI), soil apparent electrical conductivity (ECa) and bunch number (BN) data. These variables were considered separately, in pairs, or the three altogether, using fuzzy k-means cluster analysis for combinations. The zones delineated based on single variables did not allow a sufficient discrimination for grape composition at harvest, NDVI being the only variable that by itself resulted in zones that to some extent differed in grape composition. On the contrary, when two variables were combined, discrimination in terms of grape composition improved remarkably, provided the sink size estimation variable (BN) was included in the combination. Lastly, the combination of the three variables yielded the best discriminating zoning, improving slightly on those provided by NDVI + BN and ECa + BN combinations. Thus, the relevance of including a variable related to sink size (in this case the number of bunches per plant) has been confirmed, which makes its consideration highly advisable for any PV work aiming at zone delineation for grape quality purposes.

Journal

Precision AgricultureSpringer Journals

Published: Apr 16, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off