Release of elicitors from rice blast spores under the action of reactive oxygen species

Release of elicitors from rice blast spores under the action of reactive oxygen species Effects of reactive oxygen species (ROS) on the release of putative elicitors from spores of rice blast causal fungus Magnaporthe grisea (Hebert) Barr were studied. While studying the influence of exogenous ROS, the spores were germinated for 5 h in the presence of 50 μM H2O2 and then treated with catalase to decompose hydrogen peroxide. The spore germination fluid was then boiled to inactivate catalase. When the resulting diffusate was applied onto rice (Oryza sativa L.) leaves, it caused necroses and stimulated superoxide (O 2 − ) production. Both effects were observed with the resistant rice cultivar but not with the cultivar susceptible to the fungal strain. The susceptible cultivar did not acquire resistance to challenge with fungal spores, which were applied one day after the treatment. The fractionation of the spore diffusate showed that both low- and high-molecular compounds (mol wt < 3 kD and >3 kD, respectively) should be present in combination to induce O 2 − production by leaves. The diffusates from spores germinated in water also caused necroses and stimulated O 2 − generation, though to a weaker extent than diffusates from spores germinated in H2O2. The effect of diffusates from spores germinated in water was abolished by catalase or superoxide dismutase added initially to the spore suspension. The results suggest that germinating spores of M. grisea are able to release elicitors and this ability depends on ROS formation by spores. Presumably, the yield of elicitors is increased additionally if fungus M. grisea is stressed or subjected to exogenous ROS. The described phenomena may be involved in incompatibility mechanisms. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Release of elicitors from rice blast spores under the action of reactive oxygen species

Loading next page...
 
/lp/springer_journal/release-of-elicitors-from-rice-blast-spores-under-the-action-of-Jo27PNrqZj
Publisher
Springer Journals
Copyright
Copyright © 2010 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443710050031
Publisher site
See Article on Publisher Site

Abstract

Effects of reactive oxygen species (ROS) on the release of putative elicitors from spores of rice blast causal fungus Magnaporthe grisea (Hebert) Barr were studied. While studying the influence of exogenous ROS, the spores were germinated for 5 h in the presence of 50 μM H2O2 and then treated with catalase to decompose hydrogen peroxide. The spore germination fluid was then boiled to inactivate catalase. When the resulting diffusate was applied onto rice (Oryza sativa L.) leaves, it caused necroses and stimulated superoxide (O 2 − ) production. Both effects were observed with the resistant rice cultivar but not with the cultivar susceptible to the fungal strain. The susceptible cultivar did not acquire resistance to challenge with fungal spores, which were applied one day after the treatment. The fractionation of the spore diffusate showed that both low- and high-molecular compounds (mol wt < 3 kD and >3 kD, respectively) should be present in combination to induce O 2 − production by leaves. The diffusates from spores germinated in water also caused necroses and stimulated O 2 − generation, though to a weaker extent than diffusates from spores germinated in H2O2. The effect of diffusates from spores germinated in water was abolished by catalase or superoxide dismutase added initially to the spore suspension. The results suggest that germinating spores of M. grisea are able to release elicitors and this ability depends on ROS formation by spores. Presumably, the yield of elicitors is increased additionally if fungus M. grisea is stressed or subjected to exogenous ROS. The described phenomena may be involved in incompatibility mechanisms.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Sep 2, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off