Relative CO2/NH3 Permeabilities of Human RhAG, RhBG and RhCG

Relative CO2/NH3 Permeabilities of Human RhAG, RhBG and RhCG Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (ΔpHS) caused by exposing the same oocyte to 5 % CO2/33 mM HCO3 − (an increase) or 0.5 mM NH3/NH4 + (a decrease). Subtracting the respective values for day-matched, H2O-injected control oocytes yielded channel-specific values (*). $$({\Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{CO}}_{ 2} }}$$ ( Δ pH S ∗ ) CO 2 and $$({ - \Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{NH}}_{ 3} }}$$ ( - Δ pH S ∗ ) NH 3 were each significantly >0 for all channels, indicating that RhBG and RhCG—like RhAG—can carry CO2 and NH3. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH3 transport. However, surface biotinylation experiments indicate the mutants RhBGD178N and RhCGD177N have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG—like RhAG—have significant CO2 permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH3 permeability. However, as evidenced by $$({\Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{CO}}_{ 2} }} /({ - \Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{NH}}_{ 3} }}$$ ( Δ pH S ∗ ) CO 2 / ( - Δ pH S ∗ ) NH 3 values, we could not distinguish among the CO2/NH3 permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH3 but also CO2 across the membranes of CD cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Relative CO2/NH3 Permeabilities of Human RhAG, RhBG and RhCG

Loading next page...
 
/lp/springer_journal/relative-co2-nh3-permeabilities-of-human-rhag-rhbg-and-rhcg-WOK5eUWAom
Publisher
Springer US
Copyright
Copyright © 2013 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-013-9593-0
Publisher site
See Article on Publisher Site

Abstract

Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (ΔpHS) caused by exposing the same oocyte to 5 % CO2/33 mM HCO3 − (an increase) or 0.5 mM NH3/NH4 + (a decrease). Subtracting the respective values for day-matched, H2O-injected control oocytes yielded channel-specific values (*). $$({\Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{CO}}_{ 2} }}$$ ( Δ pH S ∗ ) CO 2 and $$({ - \Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{NH}}_{ 3} }}$$ ( - Δ pH S ∗ ) NH 3 were each significantly >0 for all channels, indicating that RhBG and RhCG—like RhAG—can carry CO2 and NH3. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH3 transport. However, surface biotinylation experiments indicate the mutants RhBGD178N and RhCGD177N have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG—like RhAG—have significant CO2 permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH3 permeability. However, as evidenced by $$({\Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{CO}}_{ 2} }} /({ - \Updelta {\text{pH}}_{\text{S}}^{*} })_{{{\text{NH}}_{ 3} }}$$ ( Δ pH S ∗ ) CO 2 / ( - Δ pH S ∗ ) NH 3 values, we could not distinguish among the CO2/NH3 permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH3 but also CO2 across the membranes of CD cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 29, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off