Relationship between seed quality and changes in conjugated polyamine in plasma membrane purified from wheat embryos during grain ripening

Relationship between seed quality and changes in conjugated polyamine in plasma membrane purified... In order to explore the relationship between seed quality and changes in conjugated polyamine in plasma membrane purified from wheat embryos during grain ripening. Plasma membrane (PM) vesicles were isolated from the embryos of ripening wheat (Triticum aestivum L.) grains by the gradient centrifugation method. The contents of polyamines conjugated (covalently and non-covalently) to the PM vesicles were investigated. Results showed that after pollination, from the 22nd to the 32nd day, the embryos of wheat grains underwent dehydration, as judged by the decrease of embryo relative water content (ERWC). During embryo ripening, non-covalently conjugated (NCC)-Spd and NCC-Spm, covalently conjugated (CC)-Put and CC-Spd contents increased markedly, while relative embryo cell vigor (RECV) decreased slightly. The treatment with methylglyoxyl-bis (guanylhydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), inhibited the increases of the NCC-Spd and NCC-Spm contents, enhanced the decrease of RECV simultaneously, and decreased mature seed relative germination potential (RGP). The effects of MGBG were reversed by exogenous Spd and Spm. Phenanthrolin (o–Phen), an inhibitor of transglutaminase (TGase), inhibited the increases of CC-Put and CC-Spd contents, enhanced the decrease of RECV simultaneously, and decreased mature seed RGP. These results suggest that during embryo ripening, the levels of NCC-Spd, NCC-Spm, CC-Put, and CC-Spd increase, and these increases might affect embryo cell vigor and seed germination potential. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Relationship between seed quality and changes in conjugated polyamine in plasma membrane purified from wheat embryos during grain ripening

Loading next page...
 
/lp/springer_journal/relationship-between-seed-quality-and-changes-in-conjugated-polyamine-fKM0Yw1oyj
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717030074
Publisher site
See Article on Publisher Site

Abstract

In order to explore the relationship between seed quality and changes in conjugated polyamine in plasma membrane purified from wheat embryos during grain ripening. Plasma membrane (PM) vesicles were isolated from the embryos of ripening wheat (Triticum aestivum L.) grains by the gradient centrifugation method. The contents of polyamines conjugated (covalently and non-covalently) to the PM vesicles were investigated. Results showed that after pollination, from the 22nd to the 32nd day, the embryos of wheat grains underwent dehydration, as judged by the decrease of embryo relative water content (ERWC). During embryo ripening, non-covalently conjugated (NCC)-Spd and NCC-Spm, covalently conjugated (CC)-Put and CC-Spd contents increased markedly, while relative embryo cell vigor (RECV) decreased slightly. The treatment with methylglyoxyl-bis (guanylhydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), inhibited the increases of the NCC-Spd and NCC-Spm contents, enhanced the decrease of RECV simultaneously, and decreased mature seed relative germination potential (RGP). The effects of MGBG were reversed by exogenous Spd and Spm. Phenanthrolin (o–Phen), an inhibitor of transglutaminase (TGase), inhibited the increases of CC-Put and CC-Spd contents, enhanced the decrease of RECV simultaneously, and decreased mature seed RGP. These results suggest that during embryo ripening, the levels of NCC-Spd, NCC-Spm, CC-Put, and CC-Spd increase, and these increases might affect embryo cell vigor and seed germination potential.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Apr 29, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off