Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats

Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats In order to investigate the relationship between gut microbiota and type 2 diabetic erectile dysfunction (T2DED), we analyzed the characteristics of gut microbiota in the Sprague-Dawley (SD) rats with T2DED. Thirty-five SD rats were randomly divided into two groups: control group (n=15) with normal diet, and experimental group (n=20) with construction of T2D model. Faecal and serum samples were collected at 2nd and 8th week after establishment of T2D model, respectively. Faecal samples were used for analysis of gut microbiota, and serum samples for detection of trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS), and inflammatory factors like interleukin-1 (IL-1), IL-2, IL-10, and monocyte chemoattractantprotein-1 (MCP-1). The main compositions of gut microbiota were Bacteroidetes, Proteobacteria and Firmicutes at the phylum level, and Oscillospira, Allobaculum, Bacteroides, Ruminococcus, SMB53, Prevotella, Coprococcus, Sutterella and Blautia at the genus level with relatively higher abundance in all SD rats. The relative abundance of Enterococcus, Corynebacterium, Aerococcus, Facklamia (opportunistic pathogens in most case) increased, and that of Allobaculum, Bifidobacterium, Eubacterium, Anaerotruncus (beneficial bacteria) decreased in T2DED group as compared with that at 2nd week after establishment of T2D model (T2D2 group). The serum contents of TMAO, LPS, IL-1, IL-2, IL-10 and MCP-1 in T2DED group were significantly higher than those in control group. The gut microbiota of T2DED rats was inhibited. The gut microbiota of T2DED rats had changed, as the relative abundance of beneficial bacterium was decreased while that of opportunistic pathogens was increased. The variations of gut microbiota might lead to inflammation and prompt the emergence of erectile dysfunction in the rats with T2D. TMAO might play an important role in the formation of T2DED. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Huazhong University of Science and Technology [Medical Sciences] Springer Journals

Relationship between gut microbiota and type 2 diabetic erectile dysfunction in Sprague-Dawley rats

Loading next page...
 
/lp/springer_journal/relationship-between-gut-microbiota-and-type-2-diabetic-erectile-VRYEba7B24
Publisher
Springer Journals
Copyright
Copyright © 2017 by Huazhong University of Science and Technology and Springer-Verlag GmbH Germany
Subject
Medicine & Public Health; Medicine/Public Health, general
ISSN
1672-0733
eISSN
1993-1352
D.O.I.
10.1007/s11596-017-1767-z
Publisher site
See Article on Publisher Site

Abstract

In order to investigate the relationship between gut microbiota and type 2 diabetic erectile dysfunction (T2DED), we analyzed the characteristics of gut microbiota in the Sprague-Dawley (SD) rats with T2DED. Thirty-five SD rats were randomly divided into two groups: control group (n=15) with normal diet, and experimental group (n=20) with construction of T2D model. Faecal and serum samples were collected at 2nd and 8th week after establishment of T2D model, respectively. Faecal samples were used for analysis of gut microbiota, and serum samples for detection of trimethylamine N-oxide (TMAO), lipopolysaccharide (LPS), and inflammatory factors like interleukin-1 (IL-1), IL-2, IL-10, and monocyte chemoattractantprotein-1 (MCP-1). The main compositions of gut microbiota were Bacteroidetes, Proteobacteria and Firmicutes at the phylum level, and Oscillospira, Allobaculum, Bacteroides, Ruminococcus, SMB53, Prevotella, Coprococcus, Sutterella and Blautia at the genus level with relatively higher abundance in all SD rats. The relative abundance of Enterococcus, Corynebacterium, Aerococcus, Facklamia (opportunistic pathogens in most case) increased, and that of Allobaculum, Bifidobacterium, Eubacterium, Anaerotruncus (beneficial bacteria) decreased in T2DED group as compared with that at 2nd week after establishment of T2D model (T2D2 group). The serum contents of TMAO, LPS, IL-1, IL-2, IL-10 and MCP-1 in T2DED group were significantly higher than those in control group. The gut microbiota of T2DED rats was inhibited. The gut microbiota of T2DED rats had changed, as the relative abundance of beneficial bacterium was decreased while that of opportunistic pathogens was increased. The variations of gut microbiota might lead to inflammation and prompt the emergence of erectile dysfunction in the rats with T2D. TMAO might play an important role in the formation of T2DED.

Journal

Journal of Huazhong University of Science and Technology [Medical Sciences]Springer Journals

Published: Aug 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off