Relationship between gibberellic acid and water amount in the cotton seed

Relationship between gibberellic acid and water amount in the cotton seed The role of endogenous GA3 and its application to seed development in two cotton genotypes Hybrid-6 (H-6) (big seeds) and Gujarat cotton 13 (G. Cot) (small seeds) was studied. Kernel and seed coat were subjected to growth analysis in terms of dry weight, water amount, and rates of dry matter accumulation and water uptake. H-6 kernel had manifold higher dry weight and water amount than G. Cot. Seed coat of both genotypes had similar dry weight at maturity, but the maximum rates of dry matter accumulation and water uptake were distinctly higher in H-6. According to growth analysis, development of seed kernel and coat was subdivided into four phases, i.e., cell division, cell elongation, dry matter accumulation and maturation. Endogenous GA3 level was estimated in kernel and seed coat by indirect ELISA using antibodies raised against GA3. GA3 amount per seed components was higher in the seed kernel of H-6 than of G. Cot, except 33 and 36 days after anthesis in kernel. H-6 seed coat had the higher amount of GA3 during cell division phase than that of G. Cot. Close correlation between in vivo GA3 level and water amount was recorded in both seed components. With GA3 or GA3 + NAA treatments in ovule culture, higher promotion in dry weight, water amount and seed size was noted in G. Cot than in H-6 suggesting that G. Cot is more deficient in endogenous GA3. The greatest stimulation of parameters studied was obtained in ovule culture with GA3 + NAA. When GA3 or GA3 + NAA was applied, initial significant difference in water amount and seed size was nullified. Data presented in this study indicated that GA3 regulates cell expansion through the water uptake by cotton seed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Relationship between gibberellic acid and water amount in the cotton seed

Loading next page...
 
/lp/springer_journal/relationship-between-gibberellic-acid-and-water-amount-in-the-cotton-Dd1u3L8KJZ
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2008 by MAIK Nauka
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443708060101
Publisher site
See Article on Publisher Site

Abstract

The role of endogenous GA3 and its application to seed development in two cotton genotypes Hybrid-6 (H-6) (big seeds) and Gujarat cotton 13 (G. Cot) (small seeds) was studied. Kernel and seed coat were subjected to growth analysis in terms of dry weight, water amount, and rates of dry matter accumulation and water uptake. H-6 kernel had manifold higher dry weight and water amount than G. Cot. Seed coat of both genotypes had similar dry weight at maturity, but the maximum rates of dry matter accumulation and water uptake were distinctly higher in H-6. According to growth analysis, development of seed kernel and coat was subdivided into four phases, i.e., cell division, cell elongation, dry matter accumulation and maturation. Endogenous GA3 level was estimated in kernel and seed coat by indirect ELISA using antibodies raised against GA3. GA3 amount per seed components was higher in the seed kernel of H-6 than of G. Cot, except 33 and 36 days after anthesis in kernel. H-6 seed coat had the higher amount of GA3 during cell division phase than that of G. Cot. Close correlation between in vivo GA3 level and water amount was recorded in both seed components. With GA3 or GA3 + NAA treatments in ovule culture, higher promotion in dry weight, water amount and seed size was noted in G. Cot than in H-6 suggesting that G. Cot is more deficient in endogenous GA3. The greatest stimulation of parameters studied was obtained in ovule culture with GA3 + NAA. When GA3 or GA3 + NAA was applied, initial significant difference in water amount and seed size was nullified. Data presented in this study indicated that GA3 regulates cell expansion through the water uptake by cotton seed.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 31, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off