Relationship between Ethylene and Spermidine in the Leaves of Glycyrrhiza uralensis Seedlings under Root Osmotic Stress1

Relationship between Ethylene and Spermidine in the Leaves of Glycyrrhiza uralensis Seedlings... The correlation between ethylene (ETH) production and spermidine (Spd) content was studied in the leaves of Glycyrrhiza uralensis seedlings under root osmotic stress. After 4-h root osmotic stress, Spd inhibited ETH production significantly while ETH had no significant influence on Spd content in leaves. After 24-h root osmotic stress, ETH production and Spd content showed significant negative correlations in leaves, and the negative correlations were still significant even if the common precursor S-adenosylmethionine (SAM) was abundant. This result suggested that the significant negative correlations were not mainly caused by the competition for the common precursor SAM. The results also showed that, after 24-h root osmotic stress, ETH enhanced while Spd reduced the production rate of H2O2 and markedly in leaves; furthermore, exogenous H2O2 accelerated the increase in ETH production and the decrease in Spd content caused by deep stress. So it could be concluded that reactive oxygen species played important roles in the significant negative correlations in the deeply stressed leaves of G. uralensis seedlings. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Relationship between Ethylene and Spermidine in the Leaves of Glycyrrhiza uralensis Seedlings under Root Osmotic Stress1

Loading next page...
 
/lp/springer_journal/relationship-between-ethylene-and-spermidine-in-the-leaves-of-SjsNPWtKi3
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2004 by MAIK “Nauka/Interperiodica”
Subject
Life Sciences; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1023/B:RUPP.0000028683.70891.04
Publisher site
See Article on Publisher Site

Abstract

The correlation between ethylene (ETH) production and spermidine (Spd) content was studied in the leaves of Glycyrrhiza uralensis seedlings under root osmotic stress. After 4-h root osmotic stress, Spd inhibited ETH production significantly while ETH had no significant influence on Spd content in leaves. After 24-h root osmotic stress, ETH production and Spd content showed significant negative correlations in leaves, and the negative correlations were still significant even if the common precursor S-adenosylmethionine (SAM) was abundant. This result suggested that the significant negative correlations were not mainly caused by the competition for the common precursor SAM. The results also showed that, after 24-h root osmotic stress, ETH enhanced while Spd reduced the production rate of H2O2 and markedly in leaves; furthermore, exogenous H2O2 accelerated the increase in ETH production and the decrease in Spd content caused by deep stress. So it could be concluded that reactive oxygen species played important roles in the significant negative correlations in the deeply stressed leaves of G. uralensis seedlings.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Oct 18, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off