Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery

Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery Understanding spatial and temporal variability in crop yield is a prerequisite to implementing site-specific management of crop inputs. Apparent soil electrical conductivity (ECa), soil brightness, and topography are easily obtained data that can explain yield variability. The objectives of this study were to evaluate the spatial and temporal variability in cotton (Gossypium hirsutum L.) yield and determine the relationship between yield and soil ECa, topography, and bare soil brightness at a field level in multiple growing seasons. A 50-ha field grown with cotton from 2000 to 2003 and 2005 on the Southern High Plains of Texas was selected for this study. Yield was negatively correlated with bare soil brightness (−0.47 < r < −0.33 for red band) and positively correlated with ECa (0.08 < r < 0.29 for 30-cm ECa and 0.28 < r < 0.44 for 90-cm ECa). Yield had stronger correlation with relative elevation and slope than with profile curvature and planar curvature. Combined, ECa, topographic attributes, and bare soil brightness explained up to 70.1 % of cotton yield variability. Bare soil brightness and ECa were strongly related to soil texture. Brighter soils with low ECa values had lower clay content. Yield and soil properties had stronger correlation in dry growing seasons than in wet growing seasons. Cotton yield variability pattern was relatively stable across different growing seasons. Soil texture was one of the greatest factors influencing cotton yield variability. Results of this study provide a basis for site-specific management of yield goals and variable rate application of water, fertilizers, seeds, and other inputs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Relationship between cotton yield and soil electrical conductivity, topography, and Landsat imagery

Loading next page...
 
/lp/springer_journal/relationship-between-cotton-yield-and-soil-electrical-conductivity-RZna80mmNG
Publisher
Springer US
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1007/s11119-012-9277-2
Publisher site
See Article on Publisher Site

References

  • Apparent electrical conductivity measurement in agriculture
    Corwin, DL; Lesch, SM

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial