Relation between the skew-rank of an oriented graph and the independence number of its underlying graph

Relation between the skew-rank of an oriented graph and the independence number of its underlying... An oriented graph $$G^\sigma $$ G σ is a digraph without loops or multiple arcs whose underlying graph is G. Let $$S\left( G^\sigma \right) $$ S G σ be the skew-adjacency matrix of $$G^\sigma $$ G σ and $$\alpha (G)$$ α ( G ) be the independence number of G. The rank of $$S(G^\sigma )$$ S ( G σ ) is called the skew-rank of $$G^\sigma $$ G σ , denoted by $$sr(G^\sigma )$$ s r ( G σ ) . Wong et al. (Eur J Comb 54:76–86, 2016) studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that $$sr(G^\sigma )+2\alpha (G)\geqslant 2|V_G|-2d(G)$$ s r ( G σ ) + 2 α ( G ) ⩾ 2 | V G | - 2 d ( G ) , where $$|V_G|$$ | V G | is the order of G and d(G) is the dimension of cycle space of G. We also obtain sharp lower bounds for $$sr(G^\sigma )+\alpha (G),\, sr(G^\sigma )-\alpha (G)$$ s r ( G σ ) + α ( G ) , s r ( G σ ) - α ( G ) , $$sr(G^\sigma )/\alpha (G)$$ s r ( G σ ) / α ( G ) and characterize all corresponding extremal graphs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Combinatorial Optimization Springer Journals

Relation between the skew-rank of an oriented graph and the independence number of its underlying graph

Loading next page...
 
/lp/springer_journal/relation-between-the-skew-rank-of-an-oriented-graph-and-the-Vs4Koc0ou9
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Mathematics; Combinatorics; Convex and Discrete Geometry; Mathematical Modeling and Industrial Mathematics; Theory of Computation; Optimization; Operations Research/Decision Theory
ISSN
1382-6905
eISSN
1573-2886
D.O.I.
10.1007/s10878-018-0282-x
Publisher site
See Article on Publisher Site

Abstract

An oriented graph $$G^\sigma $$ G σ is a digraph without loops or multiple arcs whose underlying graph is G. Let $$S\left( G^\sigma \right) $$ S G σ be the skew-adjacency matrix of $$G^\sigma $$ G σ and $$\alpha (G)$$ α ( G ) be the independence number of G. The rank of $$S(G^\sigma )$$ S ( G σ ) is called the skew-rank of $$G^\sigma $$ G σ , denoted by $$sr(G^\sigma )$$ s r ( G σ ) . Wong et al. (Eur J Comb 54:76–86, 2016) studied the relationship between the skew-rank of an oriented graph and the rank of its underlying graph. In this paper, the correlation involving the skew-rank, the independence number, and some other parameters are considered. First we show that $$sr(G^\sigma )+2\alpha (G)\geqslant 2|V_G|-2d(G)$$ s r ( G σ ) + 2 α ( G ) ⩾ 2 | V G | - 2 d ( G ) , where $$|V_G|$$ | V G | is the order of G and d(G) is the dimension of cycle space of G. We also obtain sharp lower bounds for $$sr(G^\sigma )+\alpha (G),\, sr(G^\sigma )-\alpha (G)$$ s r ( G σ ) + α ( G ) , s r ( G σ ) - α ( G ) , $$sr(G^\sigma )/\alpha (G)$$ s r ( G σ ) / α ( G ) and characterize all corresponding extremal graphs.

Journal

Journal of Combinatorial OptimizationSpringer Journals

Published: Mar 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off