Reincorporated Plasma Membrane Ca2+-ATPase can Mediate B-Type Ca2+ Channels Observed in Native Membrane of Human Red Blood Cells

Reincorporated Plasma Membrane Ca2+-ATPase can Mediate B-Type Ca2+ Channels Observed in Native... Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1–5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Reincorporated Plasma Membrane Ca2+-ATPase can Mediate B-Type Ca2+ Channels Observed in Native Membrane of Human Red Blood Cells

Loading next page...
 
/lp/springer_journal/reincorporated-plasma-membrane-ca2-atpase-can-mediate-b-type-ca2-L2ONvlFh9Q
Publisher
Springer-Verlag
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0163-5
Publisher site
See Article on Publisher Site

Abstract

Recently, we reported indirect evidence that plasma membrane Ca2+-ATPase (PMCA) can mediate B-type Ca2+ channels of cardiac myocytes. In the present study, in order to bring more direct evidence, purified PMCA from human red blood cells (RBC) was reconstituted into giant azolectin liposomes amenable to the patch-clamp technique. Purified RBC PMCA was used because it is available pure in larger quantity than cardiac PMCA. The presence of B-type Ca2+ channels was first investigated in native membranes of human RBC. They were detected and share the characteristics of cardiac myocytes. They spontaneously appeared in scarce short bursts of activity, they were activated by chlorpromazine (CPZ) with an EC50 of 149 mmole/l or 1 mmole/l vanadate, and then switched off by 10 mmole/l eosin or dose-dependently blocked by 1–5 mmole/l ATP. Independent of membrane potential, the channel gating exhibited complex patterns of many conductance levels, with three most often observed conductance levels of 22, 47 and 80 pS. The activation by vanadate suggests that these channels could play a role in the influx of extracellular Ca2+ involved in the vanadate-induced Gardos effect. In PMCA-reconstituted proteoliposomes, nearly half of the ATPase activity was retained and clear "channel-like" openings of Ba2+- or Ca2+-conducting channels were detected. Channel activity could be spontaneously present, lasting the patch lifetime or, when previously quiescent, activity could be induced by application of 50 mmole/l CPZ only in presence of 25 U/ml calmodulin (CaM), or by application of 1 mmole/l vanadate alone. Eosin (10 mmole/l) and ATP (5 mmole/l) significantly reduced spontaneous activity. Channel gating characteristics were similar to those of RBC, with main conductance levels of 21, 40 and 72 pS. The lack of direct activation by CPZ alone might be attributed to a purification-induced modification or absence of unidentified regulatory component(s) of PMCA. Despite a few differences in results between RBC and reincorporated PMCA, most probably attributable to the decrease in ATPase activity following the procedure of reincorporation, the present experimental conditions appear to reveal a channel-mode of the PMCA that shares many similarities with the B-type Ca2+ channel.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jun 1, 2002

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off