Reid Roundabout Theorem for Symplectic Dynamic Systems on Time Scales

Reid Roundabout Theorem for Symplectic Dynamic Systems on Time Scales The principal aim of this paper is to state and prove the so-called Reid roundabout theorem for the symplectic dynamic system (S) z Δ = \cal S t z on an arbitrary time scale \Bbb T , so that the well known case of differential linear Hamiltonian systems ( \Bbb T = \Bbb R ) and the recently developed case of discrete symplectic systems ( \Bbb T = \Bbb Z ) are unified. We list conditions which are equivalent to the positivity of the quadratic functional associated with (S), e.g. disconjugacy (in terms of no focal points of a conjoined basis) of (S), no generalized zeros for vector solutions of (S), and the existence of a solution to the corresponding Riccati matrix equation. A certain normality assumption is employed. The result requires treatment of the quadratic functionals both with general and separated boundary conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Reid Roundabout Theorem for Symplectic Dynamic Systems on Time Scales

Loading next page...
 
/lp/springer_journal/reid-roundabout-theorem-for-symplectic-dynamic-systems-on-time-scales-uDfoq8wmR0
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Mathematics; Calculus of Variations and Optimal Control; Optimization; Systems Theory, Control; Theoretical, Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Physics, Simulation
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-001-0002-1
Publisher site
See Article on Publisher Site

Abstract

The principal aim of this paper is to state and prove the so-called Reid roundabout theorem for the symplectic dynamic system (S) z Δ = \cal S t z on an arbitrary time scale \Bbb T , so that the well known case of differential linear Hamiltonian systems ( \Bbb T = \Bbb R ) and the recently developed case of discrete symplectic systems ( \Bbb T = \Bbb Z ) are unified. We list conditions which are equivalent to the positivity of the quadratic functional associated with (S), e.g. disconjugacy (in terms of no focal points of a conjoined basis) of (S), no generalized zeros for vector solutions of (S), and the existence of a solution to the corresponding Riccati matrix equation. A certain normality assumption is employed. The result requires treatment of the quadratic functionals both with general and separated boundary conditions.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: Jan 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off