Regulatory role of nitric oxide in plants

Regulatory role of nitric oxide in plants Research performed over the last few years identified nitric oxide (NO) as an intracellular signaling molecule involved in regulation of plant physiological processes at all stages of the life cycle. Nevertheless, some extremely important aspects of NO biology are still far from being clarified. There exist different points of view on NO formation and utilization in plants. The mechanisms of perception and transduction of the NO signal are not yet fully understood, and the origin of specificity underlying coordinated activation of responses to NO remains unresolved. It is reasonable to expect that the deep knowledge of NO functioning in animals may provide some keys to these questions. Such a comparative analysis is a way to reveal similarities and emphasize the differences in the current understanding of the NO role in plants. The present lecture highlights these aspects of NO functioning. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals
Loading next page...
 
/lp/springer_journal/regulatory-role-of-nitric-oxide-in-plants-ir2fvsrP6q
Publisher
Pleiades Publishing
Copyright
Copyright © 2015 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443715040135
Publisher site
See Article on Publisher Site

Abstract

Research performed over the last few years identified nitric oxide (NO) as an intracellular signaling molecule involved in regulation of plant physiological processes at all stages of the life cycle. Nevertheless, some extremely important aspects of NO biology are still far from being clarified. There exist different points of view on NO formation and utilization in plants. The mechanisms of perception and transduction of the NO signal are not yet fully understood, and the origin of specificity underlying coordinated activation of responses to NO remains unresolved. It is reasonable to expect that the deep knowledge of NO functioning in animals may provide some keys to these questions. Such a comparative analysis is a way to reveal similarities and emphasize the differences in the current understanding of the NO role in plants. The present lecture highlights these aspects of NO functioning.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Jun 17, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off