Regulation of water permeability of collecting ducts in mouse kidney during postnatal development

Regulation of water permeability of collecting ducts in mouse kidney during postnatal development Water permeability of epithelial cells and response to vasopressin was studied on isolated fragments of collecting ducts in the kidney of C57BL/6J mice of three age groups (9, 18, and 60–90 days). The coefficient of osmotic water permeability P f was evaluated from the rate of cell swelling after medium osmolality was changed from 300 to 200 mOsm/l. The P f value proved to be significantly lower in mice at the age of 9 days than at the age of 18 days, i.e., after the transition to mixed feeding; although P f at the age of 18 days does not reach the level of adult animals (58.6 ± 7.7, 94.5 ± 8.8, and 168.4 ± 11.8 μM/s, respectively). The antagonist of vasopressin V2 receptors desmopressin at 1 nM significantly increased P f in both 18-day-old and adult mice but induced no changes in 9-day-old animals. The inhibitor of protein kinase C Ro-31-8220 in the concentration of 100 nM inhibited the desmopressin effect on P f in 18 day-old and adult mice but did not inhibit the effect of the analog of the vasopressin secondary messenger cAMP, N6,O2-dibutyryl cyclic monophosphate, on P f of the plasma membrane in collecting duct cells. Thus, the response of collecting duct cells to vasopressin appears at the end of wining and correlates with the increase in unstimulated osmotic water permeability of the plasma membrane in collecting duct cells. The vasopressin signal transduction via V2 receptors is proposed to require the activity of protein kinase C and calcium-dependent systems of intercellular mediators apart from the cAMP-mediated mechanism. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Regulation of water permeability of collecting ducts in mouse kidney during postnatal development

Loading next page...
 
/lp/springer_journal/regulation-of-water-permeability-of-collecting-ducts-in-mouse-kidney-m3zxyQ8jsU
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360409030060
Publisher site
See Article on Publisher Site

Abstract

Water permeability of epithelial cells and response to vasopressin was studied on isolated fragments of collecting ducts in the kidney of C57BL/6J mice of three age groups (9, 18, and 60–90 days). The coefficient of osmotic water permeability P f was evaluated from the rate of cell swelling after medium osmolality was changed from 300 to 200 mOsm/l. The P f value proved to be significantly lower in mice at the age of 9 days than at the age of 18 days, i.e., after the transition to mixed feeding; although P f at the age of 18 days does not reach the level of adult animals (58.6 ± 7.7, 94.5 ± 8.8, and 168.4 ± 11.8 μM/s, respectively). The antagonist of vasopressin V2 receptors desmopressin at 1 nM significantly increased P f in both 18-day-old and adult mice but induced no changes in 9-day-old animals. The inhibitor of protein kinase C Ro-31-8220 in the concentration of 100 nM inhibited the desmopressin effect on P f in 18 day-old and adult mice but did not inhibit the effect of the analog of the vasopressin secondary messenger cAMP, N6,O2-dibutyryl cyclic monophosphate, on P f of the plasma membrane in collecting duct cells. Thus, the response of collecting duct cells to vasopressin appears at the end of wining and correlates with the increase in unstimulated osmotic water permeability of the plasma membrane in collecting duct cells. The vasopressin signal transduction via V2 receptors is proposed to require the activity of protein kinase C and calcium-dependent systems of intercellular mediators apart from the cAMP-mediated mechanism.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Jun 6, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off