Regulation of TRPV5 Single-Channel Activity by Intracellular pH

Regulation of TRPV5 Single-Channel Activity by Intracellular pH The transient receptor potential channel TRPV5 contributes to the apical entry pathway for transcellular calcium reabsorption in the kidney. Acid load causes hypercalciuria in animals and humans. We have previously reported that intracellular protons directly inhibit TRPV5. Here, we examined the effects of intracellular pH on single-channel activity of TRPV5. We found that TRPV5 channels exhibit full and subconductance open states in excised inside–out patches of Chinese hamster ovary cells. The slope conductance values (Na+ as a charge carrier, between −25 and −75 mV) for full and subconductance opening at intracellular pH 7.4 were 59 ± 6 and 29 ± 3 pS, respectively. Intracellular acidification caused a small decrease in single-channel conductance. Importantly, intracellular acidification decreased open probability for the full and subconductance states and increased probability for closing. To investigate how intracellular protons decrease open probability of the channel, we proposed a simple three-state model for open–subconductance–closed state transition and examined the effects of acidification on the respective forward and reverse rate constants. We found that intracellular acidification decreases opening of TRPV5 predominantly by promoting a transition from the subconductance to the closed state. Thus, intracellular acidification directly inhibits TRPV5 by causing a conformational change(s) leading to a decrease of open probability of TRPV5 as well as of the single-channel conductance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Regulation of TRPV5 Single-Channel Activity by Intracellular pH

Loading next page...
 
/lp/springer_journal/regulation-of-trpv5-single-channel-activity-by-intracellular-ph-PhzWcAkZy8
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-007-9076-2
Publisher site
See Article on Publisher Site

Abstract

The transient receptor potential channel TRPV5 contributes to the apical entry pathway for transcellular calcium reabsorption in the kidney. Acid load causes hypercalciuria in animals and humans. We have previously reported that intracellular protons directly inhibit TRPV5. Here, we examined the effects of intracellular pH on single-channel activity of TRPV5. We found that TRPV5 channels exhibit full and subconductance open states in excised inside–out patches of Chinese hamster ovary cells. The slope conductance values (Na+ as a charge carrier, between −25 and −75 mV) for full and subconductance opening at intracellular pH 7.4 were 59 ± 6 and 29 ± 3 pS, respectively. Intracellular acidification caused a small decrease in single-channel conductance. Importantly, intracellular acidification decreased open probability for the full and subconductance states and increased probability for closing. To investigate how intracellular protons decrease open probability of the channel, we proposed a simple three-state model for open–subconductance–closed state transition and examined the effects of acidification on the respective forward and reverse rate constants. We found that intracellular acidification decreases opening of TRPV5 predominantly by promoting a transition from the subconductance to the closed state. Thus, intracellular acidification directly inhibits TRPV5 by causing a conformational change(s) leading to a decrease of open probability of TRPV5 as well as of the single-channel conductance.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Nov 15, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off