Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/ UV-A- or by UV-B-light

Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of... The photomorphogenetic aurea mutant of tomato severely deficient in spectrophotometrically active phytochromes was used to study the light-regulation of the single-copy nuclear gene encoding plastidic glutamine synthetase (GS-2; EC 6.1.3.2). The de-etiolation of dark-grown aurea mutant seedling cotyledons showed an obligatory dependency on blue light. A limited red light-responsiveness of etiolated aurea cotyledons is, however, retained as seen by the stimulation of both the GS-2 transcript and protein level in the cotyledons of aurea seedlings during growth in red light. The subunits of the octameric GS-2 enzyme were represented by polypeptides with similar electrophoretic mobilities (polypeptides a) in etiolated wild-type or aurea mutant cotyledons. GS-2 proteins with similar apparent molecular masses were also seen in the cotyledons of red light-grown aurea mutant seedlings. In contrast, GS-2 polypeptides with different apparent molecular masses (polypeptides a and b) were detected in the cotyledons of wild-type seedlings grown in red light. This difference indicates that the (post-translational) modification of tomato GS-2 subunit composition is mediated by the photoreceptor phytochrome. The illumination of etiolated wild-type or aurea cotyledons with UV-A- or UV-B-light light resulted in an increase in both the GS-2 transcript and protein level. Following illumination of etiolated wild-type seedlings with UV-A-light, the relative proportion of the GS-2 polypeptides a and b was similar than upon irradiation with blue light but different than after exposure to UV-B- or red light. This result suggests the involvement of a blue/ UV-A-light-specific photoreceptor in the regulation of tomato GS-2 subunit composition. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Regulation of the subunit composition of plastidic glutamine synthetase of the wild-type and of the phytochrome-deficient aurea mutant of tomato by blue/ UV-A- or by UV-B-light

Loading next page...
 
/lp/springer_journal/regulation-of-the-subunit-composition-of-plastidic-glutamine-IhWV8elr7f
Publisher
Springer Journals
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006005818757
Publisher site
See Article on Publisher Site

Abstract

The photomorphogenetic aurea mutant of tomato severely deficient in spectrophotometrically active phytochromes was used to study the light-regulation of the single-copy nuclear gene encoding plastidic glutamine synthetase (GS-2; EC 6.1.3.2). The de-etiolation of dark-grown aurea mutant seedling cotyledons showed an obligatory dependency on blue light. A limited red light-responsiveness of etiolated aurea cotyledons is, however, retained as seen by the stimulation of both the GS-2 transcript and protein level in the cotyledons of aurea seedlings during growth in red light. The subunits of the octameric GS-2 enzyme were represented by polypeptides with similar electrophoretic mobilities (polypeptides a) in etiolated wild-type or aurea mutant cotyledons. GS-2 proteins with similar apparent molecular masses were also seen in the cotyledons of red light-grown aurea mutant seedlings. In contrast, GS-2 polypeptides with different apparent molecular masses (polypeptides a and b) were detected in the cotyledons of wild-type seedlings grown in red light. This difference indicates that the (post-translational) modification of tomato GS-2 subunit composition is mediated by the photoreceptor phytochrome. The illumination of etiolated wild-type or aurea cotyledons with UV-A- or UV-B-light light resulted in an increase in both the GS-2 transcript and protein level. Following illumination of etiolated wild-type seedlings with UV-A-light, the relative proportion of the GS-2 polypeptides a and b was similar than upon irradiation with blue light but different than after exposure to UV-B- or red light. This result suggests the involvement of a blue/ UV-A-light-specific photoreceptor in the regulation of tomato GS-2 subunit composition.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off