Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens

Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of... The white flowers of N. suaveolens emit a complex bouquet of fragrance volatiles. The dominant compounds are benzenoids (e.g. methyl benzoate, methyl salicylate, benzyl benzoate and benzyl salicylate), monoterpenes (1,8-cineole, limonene, sabinene, E-β-ocimene, β-β-myrcene, α- and β-pinene and α-terpineole) and sesquiterpenes (e.g. caryophyllene), which are all emitted at higher levels during the night. Here, we show that the simultaneous nocturnal emission of most monoterpenes is realized by a single floral-specific multi-product enzyme (1,8-cineole synthase, CIN), which synthesizes the monoterpenes of the “cineole cassette”. Interestingly, N. suaveolens is the only known taxon of the Suaveolentes section to have a flower emitting “cineole cassette of monoterpenes” which is otherwise typical for the Alatae section. Gene sequence analysis of CIN has revealed the highest similarities to other angiosperm monoterpene synthases from Vitis vinifera, Quercus ilex, Citrus unshiu and C. limon, which cluster in the same branch of the terpene synthase B subfamily. However, based on its synthesized products, N. suaveolens CIN shares similarity with enzymes of the Arabidopsis thaliana root and Salvia officinalis leaf. The N. suaveolens CIN gene is only expressed in the stigma/style tissue and petals. Thin sections of petals present the enzyme primarily in the adaxial and abaxial epidermis; this facilitates the comprehensive emission of volatiles in all spacial directions. The oscillation of monoterpene emission is a consequence of the regulation of the CIN gene by the circadian clock, with oscillations occurring at the level of transcript and protein accumulations and of enzyme activity. Light/dark or dark/light transition signals synchronize the slow-running endogenous clock. Two strategies for synchronized scent emission have been established in N. suaveolens flowers: (i) the synthesis of volatile organic compounds by a multi-product enzyme and (ii) the coordination of biosynthetic pathways by a circadian clock. Plant Molecular Biology Springer Journals

Regulation of simultaneous synthesis of floral scent terpenoids by the 1,8-cineole synthase of Nicotiana suaveolens

Loading next page...
Springer Netherlands
Copyright © 2007 by Springer Science+Business Media B.V.
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial