Regulation of Ion Fluxes, Cell Volume and Gap Junctional Coupling by cGMP in GFSHR-17 Granulosa Cells

Regulation of Ion Fluxes, Cell Volume and Gap Junctional Coupling by cGMP in GFSHR-17 Granulosa... Gap junctional communication between granulosa cells seems to play a crucial role for follicular growth and atresia. Application of the double whole-cell patch-clamp- and ratiometric fura-2-techniques allowed a simultaneous measurement of gap junctional conductance (G j) and cytoplasmic concentration of free Ca2+ ([Ca2+]i) in a rat granulosa cell line GFSHR-17. The voltage-dependent gating of G j varied for different cell pairs. One population exhibited a bell-shape dependence of G j on transjunctional voltage, which was strikingly similar to that of Cx43/Cx43 homotypic gap junction channels expressed in pairs of oocytes of Xenopus laevis. Within 15–20 min, gap junctional uncoupling occurred spontaneously, which was preceded by a sustained increase of [Ca2+]i and accompanied by shrinkage of cellular volume. These responses to the whole-cell configuration were avoided by absence of extracellular Ca2+, blockage of K+ efflux, or addition of 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP) to the pipette solution. Even in the absence of extracellular Ca2+ or blockage of K+ efflux, formation of whole-cell configuration generated a Ca2+ spike that could be suppressed by the presence of 8-Br-cGMP. We propose that intracellular cGMP regulates Ca2+ release from intracellular Ca2+ stores, which activates sustained Ca2+ influx, K+ efflux and cellular shrinkage. We discuss whether gap junctional conductance is directly affected by cGMP or by cellular shrinkage and whether gap junctional coupling and/or cell shrinkage is involved in the regulation of apoptotic/necrotic processes in granulosa cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Regulation of Ion Fluxes, Cell Volume and Gap Junctional Coupling by cGMP in GFSHR-17 Granulosa Cells

Loading next page...
 
/lp/springer_journal/regulation-of-ion-fluxes-cell-volume-and-gap-junctional-coupling-by-SoX0PHrDLN
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-2033-9
Publisher site
See Article on Publisher Site

Abstract

Gap junctional communication between granulosa cells seems to play a crucial role for follicular growth and atresia. Application of the double whole-cell patch-clamp- and ratiometric fura-2-techniques allowed a simultaneous measurement of gap junctional conductance (G j) and cytoplasmic concentration of free Ca2+ ([Ca2+]i) in a rat granulosa cell line GFSHR-17. The voltage-dependent gating of G j varied for different cell pairs. One population exhibited a bell-shape dependence of G j on transjunctional voltage, which was strikingly similar to that of Cx43/Cx43 homotypic gap junction channels expressed in pairs of oocytes of Xenopus laevis. Within 15–20 min, gap junctional uncoupling occurred spontaneously, which was preceded by a sustained increase of [Ca2+]i and accompanied by shrinkage of cellular volume. These responses to the whole-cell configuration were avoided by absence of extracellular Ca2+, blockage of K+ efflux, or addition of 8-bromoguanosine 3′,5′-cyclic monophosphate (8-Br-cGMP) to the pipette solution. Even in the absence of extracellular Ca2+ or blockage of K+ efflux, formation of whole-cell configuration generated a Ca2+ spike that could be suppressed by the presence of 8-Br-cGMP. We propose that intracellular cGMP regulates Ca2+ release from intracellular Ca2+ stores, which activates sustained Ca2+ influx, K+ efflux and cellular shrinkage. We discuss whether gap junctional conductance is directly affected by cGMP or by cellular shrinkage and whether gap junctional coupling and/or cell shrinkage is involved in the regulation of apoptotic/necrotic processes in granulosa cells.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Sep 19, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off